Spaces:
Runtime error
Runtime error
File size: 12,709 Bytes
e9d4572 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
import cv2
import numpy as np
from scipy.ndimage import label
from numba import njit
def get_ball_structuring_element(radius):
"""Get a ball shape structuring element with specific radius for morphology operation.
The radius of ball usually equals to (leaking_gap_size / 2).
# Arguments
radius: radius of ball shape.
# Returns
an array of ball structuring element.
"""
return cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2 * radius + 1, 2 * radius + 1))
def get_unfilled_point(image):
"""Get points belong to unfilled(value==255) area.
# Arguments
image: an image.
# Returns
an array of points.
"""
y, x = np.where(image == 255)
return np.stack((x.astype(int), y.astype(int)), axis=-1)
def exclude_area(image, radius):
"""Perform erosion on image to exclude points near the boundary.
We want to pick part using floodfill from the seed point after dilation.
When the seed point is near boundary, it might not stay in the fill, and would
not be a valid point for next floodfill operation. So we ignore these points with erosion.
# Arguments
image: an image.
radius: radius of ball shape.
# Returns
an image after dilation.
"""
return cv2.morphologyEx(image, cv2.MORPH_ERODE, get_ball_structuring_element(radius), anchor=(-1, -1), iterations=1)
def trapped_ball_fill_single(image, seed_point, radius):
"""Perform a single trapped ball fill operation.
# Arguments
image: an image. the image should consist of white background, black lines and black fills.
the white area is unfilled area, and the black area is filled area.
seed_point: seed point for trapped-ball fill, a tuple (integer, integer).
radius: radius of ball shape.
# Returns
an image after filling.
"""
ball = get_ball_structuring_element(radius)
pass1 = np.full(image.shape, 255, np.uint8)
pass2 = np.full(image.shape, 255, np.uint8)
im_inv = cv2.bitwise_not(image)
# Floodfill the image
mask1 = cv2.copyMakeBorder(im_inv, 1, 1, 1, 1, cv2.BORDER_CONSTANT, 0)
_, pass1, _, _ = cv2.floodFill(pass1, mask1, seed_point, 0, 0, 0, 4)
# Perform dilation on image. The fill areas between gaps became disconnected.
pass1 = cv2.morphologyEx(pass1, cv2.MORPH_DILATE, ball, anchor=(-1, -1), iterations=1)
mask2 = cv2.copyMakeBorder(pass1, 1, 1, 1, 1, cv2.BORDER_CONSTANT, 0)
# Floodfill with seed point again to select one fill area.
_, pass2, _, rect = cv2.floodFill(pass2, mask2, seed_point, 0, 0, 0, 4)
# Perform erosion on the fill result leaking-proof fill.
pass2 = cv2.morphologyEx(pass2, cv2.MORPH_ERODE, ball, anchor=(-1, -1), iterations=1)
return pass2
def trapped_ball_fill_multi(image, radius, method='mean', max_iter=1000):
"""Perform multi trapped ball fill operations until all valid areas are filled.
# Arguments
image: an image. The image should consist of white background, black lines and black fills.
the white area is unfilled area, and the black area is filled area.
radius: radius of ball shape.
method: method for filtering the fills.
'max' is usually with large radius for select large area such as background.
max_iter: max iteration number.
# Returns
an array of fills' points.
"""
print('trapped-ball ' + str(radius))
unfill_area = image
filled_area, filled_area_size, result = [], [], []
for _ in range(max_iter):
points = get_unfilled_point(exclude_area(unfill_area, radius))
if not len(points) > 0:
break
fill = trapped_ball_fill_single(unfill_area, (points[0][0], points[0][1]), radius)
unfill_area = cv2.bitwise_and(unfill_area, fill)
filled_area.append(np.where(fill == 0))
filled_area_size.append(len(np.where(fill == 0)[0]))
filled_area_size = np.asarray(filled_area_size)
if method == 'max':
area_size_filter = np.max(filled_area_size)
elif method == 'median':
area_size_filter = np.median(filled_area_size)
elif method == 'mean':
area_size_filter = np.mean(filled_area_size)
else:
area_size_filter = 0
result_idx = np.where(filled_area_size >= area_size_filter)[0]
for i in result_idx:
result.append(filled_area[i])
return result
def flood_fill_single(im, seed_point):
"""Perform a single flood fill operation.
# Arguments
image: an image. the image should consist of white background, black lines and black fills.
the white area is unfilled area, and the black area is filled area.
seed_point: seed point for trapped-ball fill, a tuple (integer, integer).
# Returns
an image after filling.
"""
pass1 = np.full(im.shape, 255, np.uint8)
im_inv = cv2.bitwise_not(im)
mask1 = cv2.copyMakeBorder(im_inv, 1, 1, 1, 1, cv2.BORDER_CONSTANT, 0)
_, pass1, _, _ = cv2.floodFill(pass1, mask1, seed_point, 0, 0, 0, 4)
return pass1
@njit
def count_all(labeled_array, all_counts):
M = labeled_array.shape[0]
N = labeled_array.shape[1]
for x in range(M):
for y in range(N):
i = labeled_array[x, y] - 1
if i > -1:
all_counts[i] = all_counts[i] + 1
return
@njit
def trace_all(labeled_array, xs, ys, cs):
M = labeled_array.shape[0]
N = labeled_array.shape[1]
for x in range(M):
for y in range(N):
current_label = labeled_array[x, y] - 1
if current_label > -1:
current_label_count = cs[current_label]
xs[current_label][current_label_count] = x
ys[current_label][current_label_count] = y
cs[current_label] = current_label_count + 1
return
def find_all(labeled_array):
hist_size = int(np.max(labeled_array))
if hist_size == 0:
return []
all_counts = [0 for _ in range(hist_size)]
count_all(labeled_array, all_counts)
xs = [np.zeros(shape=(item, ), dtype=np.uint32) for item in all_counts]
ys = [np.zeros(shape=(item, ), dtype=np.uint32) for item in all_counts]
cs = [0 for item in all_counts]
trace_all(labeled_array, xs, ys, cs)
filled_area = []
for _ in range(hist_size):
filled_area.append((xs[_], ys[_]))
return filled_area
def flood_fill_multi(image, merge=False):
print('floodfill')
labeled_array, num_features = label(image / 255)
print('floodfill_ok1')
filled_area = find_all(labeled_array)
print('floodfill_ok2')
if merge:
new_fill = []
for item in filled_area:
if len(item[0]) > 8:
new_fill.append(item)
return new_fill
print('floodfill_ok3')
return filled_area
def old_flood_fill_multi(image, max_iter=20000):
"""Perform multi flood fill operations until all valid areas are filled.
This operation will fill all rest areas, which may result large amount of fills.
# Arguments
image: an image. the image should contain white background, black lines and black fills.
the white area is unfilled area, and the black area is filled area.
max_iter: max iteration number.
# Returns
an array of fills' points.
"""
print('floodfill')
unfill_area = image
filled_area = []
for _ in range(max_iter):
points = get_unfilled_point(unfill_area)
if not len(points) > 0:
break
fill = flood_fill_single(unfill_area, (points[0][0], points[0][1]))
unfill_area = cv2.bitwise_and(unfill_area, fill)
filled_area.append(np.where(fill == 0))
return filled_area
def mark_fill(image, fills):
"""Mark filled areas with 0.
# Arguments
image: an image.
fills: an array of fills' points.
# Returns
an image.
"""
result = image.copy()
for fill in fills:
result[fill] = 0
return result
def build_fill_map(image, fills):
"""Make an image(array) with each pixel(element) marked with fills' id. id of line is 0.
# Arguments
image: an image.
fills: an array of fills' points.
# Returns
an array.
"""
result = np.zeros(image.shape[:2], np.int)
for index, fill in enumerate(fills):
if(len(fill[0]) == 0):
continue
result[fill] = index + 1
return result
def show_fill_map(fillmap):
"""Mark filled areas with colors. It is useful for visualization.
# Arguments
image: an image.
fills: an array of fills' points.
# Returns
an image.
"""
# Generate color for each fill randomly.
colors = np.random.randint(0, 255, (np.max(fillmap) + 1, 3))
# Id of line is 0, and its color is black.
colors[0] = [0, 0, 0]
return colors[fillmap]
def get_bounding_rect(points):
"""Get a bounding rect of points.
# Arguments
points: array of points.
# Returns
rect coord
"""
x1, y1, x2, y2 = np.min(points[1]), np.min(points[0]), np.max(points[1]), np.max(points[0])
return x1, y1, x2, y2
def get_border_bounding_rect(h, w, p1, p2, r):
"""Get a valid bounding rect in the image with border of specific size.
# Arguments
h: image max height.
w: image max width.
p1: start point of rect.
p2: end point of rect.
r: border radius.
# Returns
rect coord
"""
x1, y1, x2, y2 = p1[0], p1[1], p2[0], p2[1]
x1 = x1 - r if 0 < x1 - r else 0
y1 = y1 - r if 0 < y1 - r else 0
x2 = x2 + r + 1 if x2 + r + 1 < w else w
y2 = y2 + r + 1 if y2 + r + 1 < h else h
return x1, y1, x2, y2
def get_border_point(points, rect, max_height, max_width):
"""Get border points of a fill area
# Arguments
points: points of fill .
rect: bounding rect of fill.
max_height: image max height.
max_width: image max width.
# Returns
points , convex shape of points
"""
# Get a local bounding rect.
border_rect = get_border_bounding_rect(max_height, max_width, rect[:2], rect[2:], 2)
# Get fill in rect.
fill = np.zeros((border_rect[3] - border_rect[1], border_rect[2] - border_rect[0]), np.uint8)
# Move points to the rect.
fill[(points[0] - border_rect[1], points[1] - border_rect[0])] = 255
# Get shape.
_, contours, _ = cv2.findContours(fill, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# approx_shape = cv2.approxPolyDP(contours[0], 0.02 * cv2.arcLength(contours[0], True), True)
# Get border pixel.
# Structuring element in cross shape is used instead of box to get 4-connected border.
cross = cv2.getStructuringElement(cv2.MORPH_CROSS, (3, 3))
border_pixel_mask = cv2.morphologyEx(fill, cv2.MORPH_DILATE, cross, anchor=(-1, -1), iterations=1) - fill
border_pixel_points = np.where(border_pixel_mask == 255)
# Transform points back to fillmap.
border_pixel_points = (border_pixel_points[0] + border_rect[1], border_pixel_points[1] + border_rect[0])
return border_pixel_points
def merge_fill(fillmap, max_iter=20):
"""Merge fill areas.
# Arguments
fillmap: an image.
max_iter: max iteration number.
# Returns
an image.
"""
max_height, max_width = fillmap.shape[:2]
result = fillmap.copy()
for i in range(max_iter):
print('merge ' + str(i + 1))
result[np.where(fillmap == 0)] = 0
fill_id = np.unique(result.flatten())
fills = []
for j in fill_id:
point = np.where(result == j)
fills.append({
'id': j,
'point': point,
'area': len(point[0]),
})
for j, f in enumerate(fills):
# ignore lines
if f['id'] == 0:
continue
if f['area'] < 5:
result[f['point']] = 0
if len(fill_id) == len(np.unique(result.flatten())):
break
return result
def merge_one(fillmap):
result = fillmap.copy()
print('merge')
result[np.where(fillmap == 0)] = 0
fill_id = np.unique(result.flatten())
fills = []
for j in fill_id:
point = np.where(result == j)
fills.append({
'id': j,
'point': point,
'area': len(point[0]),
})
for j, f in enumerate(fills):
# ignore lines
if f['id'] == 0:
continue
if f['area'] < 5:
result[f['point']] = 0
return result
|