Spaces:
Runtime error
Runtime error
File size: 5,236 Bytes
b51a9f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
#!/usr/bin/env python3
#coding:utf-8
import os
import os.path as osp
import re
import sys
import yaml
import shutil
import numpy as np
import paddle
import click
import warnings
warnings.simplefilter('ignore')
from functools import reduce
from munch import Munch
from starganv2vc_paddle.meldataset import build_dataloader
from starganv2vc_paddle.optimizers import build_optimizer
from starganv2vc_paddle.models import build_model
from starganv2vc_paddle.trainer import Trainer
from visualdl import LogWriter
from starganv2vc_paddle.Utils.ASR.models import ASRCNN
from starganv2vc_paddle.Utils.JDC.model import JDCNet
import logging
from logging import StreamHandler
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
handler = StreamHandler()
handler.setLevel(logging.DEBUG)
logger.addHandler(handler)
@click.command()
@click.option('-p', '--config_path', default='Configs/config.yml', type=str)
def main(config_path):
config = yaml.safe_load(open(config_path))
log_dir = config['log_dir']
if not osp.exists(log_dir): os.makedirs(log_dir, exist_ok=True)
shutil.copy(config_path, osp.join(log_dir, osp.basename(config_path)))
writer = LogWriter(log_dir + "/visualdl")
# write logs
file_handler = logging.FileHandler(osp.join(log_dir, 'train.log'))
file_handler.setLevel(logging.DEBUG)
file_handler.setFormatter(logging.Formatter('%(levelname)s:%(asctime)s: %(message)s'))
logger.addHandler(file_handler)
batch_size = config.get('batch_size', 10)
epochs = config.get('epochs', 1000)
save_freq = config.get('save_freq', 20)
train_path = config.get('train_data', None)
val_path = config.get('val_data', None)
stage = config.get('stage', 'star')
fp16_run = config.get('fp16_run', False)
# load data
train_list, val_list = get_data_path_list(train_path, val_path)
train_dataloader = build_dataloader(train_list,
batch_size=batch_size,
num_workers=4)
val_dataloader = build_dataloader(val_list,
batch_size=batch_size,
validation=True,
num_workers=2)
# load pretrained ASR model
ASR_config = config.get('ASR_config', False)
ASR_path = config.get('ASR_path', False)
with open(ASR_config) as f:
ASR_config = yaml.safe_load(f)
ASR_model_config = ASR_config['model_params']
ASR_model = ASRCNN(**ASR_model_config)
params = paddle.load(ASR_path)['model']
ASR_model.set_state_dict(params)
_ = ASR_model.eval()
# load pretrained F0 model
F0_path = config.get('F0_path', False)
F0_model = JDCNet(num_class=1, seq_len=192)
params = paddle.load(F0_path)['net']
F0_model.set_state_dict(params)
# build model
model, model_ema = build_model(Munch(config['model_params']), F0_model, ASR_model)
scheduler_params = {
"max_lr": float(config['optimizer_params'].get('lr', 2e-4)),
"pct_start": float(config['optimizer_params'].get('pct_start', 0.0)),
"epochs": epochs,
"steps_per_epoch": len(train_dataloader),
}
scheduler_params_dict = {key: scheduler_params.copy() for key in model}
scheduler_params_dict['mapping_network']['max_lr'] = 2e-6
optimizer = build_optimizer({key: model[key].parameters() for key in model},
scheduler_params_dict=scheduler_params_dict)
trainer = Trainer(args=Munch(config['loss_params']), model=model,
model_ema=model_ema,
optimizer=optimizer,
train_dataloader=train_dataloader,
val_dataloader=val_dataloader,
logger=logger,
fp16_run=fp16_run)
if config.get('pretrained_model', '') != '':
trainer.load_checkpoint(config['pretrained_model'],
load_only_params=config.get('load_only_params', True))
for _ in range(1, epochs+1):
epoch = trainer.epochs
train_results = trainer._train_epoch()
eval_results = trainer._eval_epoch()
results = train_results.copy()
results.update(eval_results)
logger.info('--- epoch %d ---' % epoch)
for key, value in results.items():
if isinstance(value, float):
logger.info('%-15s: %.4f' % (key, value))
writer.add_scalar(key, value, epoch)
else:
for v in value:
writer.add_histogram('eval_spec', v, epoch)
if (epoch % save_freq) == 0:
trainer.save_checkpoint(osp.join(log_dir, 'epoch_%05d.pd' % epoch))
return 0
def get_data_path_list(train_path=None, val_path=None):
if train_path is None:
train_path = "Data/train_list.txt"
if val_path is None:
val_path = "Data/val_list.txt"
with open(train_path, 'r') as f:
train_list = f.readlines()
with open(val_path, 'r') as f:
val_list = f.readlines()
return train_list, val_list
if __name__=="__main__":
main()
|