File size: 5,236 Bytes
b51a9f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#!/usr/bin/env python3
#coding:utf-8

import os
import os.path as osp
import re
import sys
import yaml
import shutil
import numpy as np
import paddle
import click
import warnings
warnings.simplefilter('ignore')

from functools import reduce
from munch import Munch

from starganv2vc_paddle.meldataset import build_dataloader
from starganv2vc_paddle.optimizers import build_optimizer
from starganv2vc_paddle.models import build_model
from starganv2vc_paddle.trainer import Trainer
from visualdl import LogWriter

from starganv2vc_paddle.Utils.ASR.models import ASRCNN
from starganv2vc_paddle.Utils.JDC.model import JDCNet

import logging
from logging import StreamHandler
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
handler = StreamHandler()
handler.setLevel(logging.DEBUG)
logger.addHandler(handler)


@click.command()
@click.option('-p', '--config_path', default='Configs/config.yml', type=str)

def main(config_path):
    config = yaml.safe_load(open(config_path))

    log_dir = config['log_dir']
    if not osp.exists(log_dir): os.makedirs(log_dir, exist_ok=True)
    shutil.copy(config_path, osp.join(log_dir, osp.basename(config_path)))
    writer = LogWriter(log_dir + "/visualdl")

    # write logs
    file_handler = logging.FileHandler(osp.join(log_dir, 'train.log'))
    file_handler.setLevel(logging.DEBUG)
    file_handler.setFormatter(logging.Formatter('%(levelname)s:%(asctime)s: %(message)s'))
    logger.addHandler(file_handler)
    
    batch_size = config.get('batch_size', 10)
    epochs = config.get('epochs', 1000)
    save_freq = config.get('save_freq', 20)
    train_path = config.get('train_data', None)
    val_path = config.get('val_data', None)
    stage = config.get('stage', 'star')
    fp16_run = config.get('fp16_run', False)
    
    # load data
    train_list, val_list = get_data_path_list(train_path, val_path)
    train_dataloader = build_dataloader(train_list,
                                        batch_size=batch_size,
                                        num_workers=4)
    val_dataloader = build_dataloader(val_list,
                                      batch_size=batch_size,
                                      validation=True,
                                      num_workers=2)

    # load pretrained ASR model
    ASR_config = config.get('ASR_config', False)
    ASR_path = config.get('ASR_path', False)
    with open(ASR_config) as f:
            ASR_config = yaml.safe_load(f)
    ASR_model_config = ASR_config['model_params']
    ASR_model = ASRCNN(**ASR_model_config)
    params = paddle.load(ASR_path)['model']
    ASR_model.set_state_dict(params)
    _ = ASR_model.eval()
    
    # load pretrained F0 model
    F0_path = config.get('F0_path', False)
    F0_model = JDCNet(num_class=1, seq_len=192)
    params = paddle.load(F0_path)['net']
    F0_model.set_state_dict(params)
    
    # build model
    model, model_ema = build_model(Munch(config['model_params']), F0_model, ASR_model)

    scheduler_params = {
        "max_lr": float(config['optimizer_params'].get('lr', 2e-4)),
        "pct_start": float(config['optimizer_params'].get('pct_start', 0.0)),
        "epochs": epochs,
        "steps_per_epoch": len(train_dataloader),
    }
    
    scheduler_params_dict = {key: scheduler_params.copy() for key in model}
    scheduler_params_dict['mapping_network']['max_lr'] = 2e-6
    optimizer = build_optimizer({key: model[key].parameters() for key in model},
                                      scheduler_params_dict=scheduler_params_dict)

    trainer = Trainer(args=Munch(config['loss_params']), model=model,
                            model_ema=model_ema,
                            optimizer=optimizer,
                            train_dataloader=train_dataloader,
                            val_dataloader=val_dataloader,
                            logger=logger,
                            fp16_run=fp16_run)

    if config.get('pretrained_model', '') != '':
        trainer.load_checkpoint(config['pretrained_model'],
                                load_only_params=config.get('load_only_params', True))

    for _ in range(1, epochs+1):
        epoch = trainer.epochs
        train_results = trainer._train_epoch()
        eval_results = trainer._eval_epoch()
        results = train_results.copy()
        results.update(eval_results)
        logger.info('--- epoch %d ---' % epoch)
        for key, value in results.items():
            if isinstance(value, float):
                logger.info('%-15s: %.4f' % (key, value))
                writer.add_scalar(key, value, epoch)
            else:
                for v in value:
                    writer.add_histogram('eval_spec', v, epoch)
        if (epoch % save_freq) == 0:
            trainer.save_checkpoint(osp.join(log_dir, 'epoch_%05d.pd' % epoch))

    return 0

def get_data_path_list(train_path=None, val_path=None):
    if train_path is None:
        train_path = "Data/train_list.txt"
    if val_path is None:
        val_path = "Data/val_list.txt"

    with open(train_path, 'r') as f:
        train_list = f.readlines()
    with open(val_path, 'r') as f:
        val_list = f.readlines()

    return train_list, val_list

if __name__=="__main__":
    main()