# -*- coding: utf-8 -*- import sys import os import torch # import important files root_path = os.path.abspath('.') sys.path.append(root_path) from architecture.cunet import UNet_Full from architecture.discriminator import UNetDiscriminatorSN from train_code.train_master import train_master class train_cugan(train_master): def __init__(self, options, args) -> None: super().__init__(options, args, "cugan", True) # Pass a model name unique code def loss_init(self): # prepare pixel loss (Generator) self.pixel_loss_load() # prepare perceptual loss self.GAN_loss_load() def call_model(self): self.generator = UNet_Full().cuda() # self.generator = torch.compile(self.generator).cuda() self.discriminator = UNetDiscriminatorSN(3).cuda() # self.discriminator = torch.compile(self.discriminator).cuda() self.generator.train(); self.discriminator.train() def run(self): self.master_run() def calculate_loss(self, gen_hr, imgs_hr): ###################### We have 3 losses on Generator ###################### # Generator Pixel loss (l1 loss): generated vs. GT l_g_pix = self.cri_pix(gen_hr, imgs_hr) self.generator_loss += l_g_pix self.weight_store["pixel_loss"] = l_g_pix # Generator perceptual loss: generated vs. perceptual l_g_percep_danbooru = self.cri_danbooru_perceptual(gen_hr, imgs_hr) l_g_percep_vgg = self.cri_vgg_perceptual(gen_hr, imgs_hr) l_g_percep = l_g_percep_danbooru + l_g_percep_vgg self.generator_loss += l_g_percep self.weight_store["perceptual_loss"] = l_g_percep # Generator GAN loss label correction fake_g_preds = self.discriminator(gen_hr) l_g_gan = self.cri_gan(fake_g_preds, True, is_disc=False) # loss_weight (self.gan_loss_weight) is included self.generator_loss += l_g_gan self.weight_store["gan_loss"] = l_g_gan # Already with gan_loss_weight (0.2/1) def tensorboard_report(self, iteration): self.writer.add_scalar('Loss/train-Generator_Loss-Iteration', self.generator_loss, iteration) self.writer.add_scalar('Loss/train-Pixel_Loss-Iteration', self.weight_store["pixel_loss"], iteration) self.writer.add_scalar('Loss/train-Perceptual_Loss-Iteration', self.weight_store["perceptual_loss"], iteration) self.writer.add_scalar('Loss/train-Discriminator_Loss-Iteration', self.weight_store["gan_loss"], iteration)