Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,826 Bytes
59b2a81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
'''
This repository is used to prepare Bridge dataset with this that conditioning
'''
import os, sys, shutil
import pickle
from ultralytics import YOLO
from PIL import Image, ImageDraw
import numpy as np
import cv2
import math
import collections
from segment_anything import SamAutomaticMaskGenerator, SamPredictor, sam_model_registry
def show_mask(mask, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
return mask_image * 255
def read_center_point(model, img_path, do_visualization, store_path):
action_img = Image.open(img_path)
prediction = model.predict(source=action_img, save=False)[0] # Only 1 frame
if not hasattr(prediction, "boxes"):
print("Detection Fail: We cannot have boxes attribute")
return None, None # -1 means NAN and pass this case
# save at the temp_places for visualizaiton
if do_visualization:
prediction.save(filename=store_path)
bounding_boxes = prediction.boxes.xywh
num, dim = bounding_boxes.shape
assert(dim == 4)
# Catch up all center point of all bounding boxes
edge_point_cord = []
center_points = []
for idx in range(num):
x, y, w, h = bounding_boxes[idx].detach().cpu().numpy()
center_point = [x, y] # TODO: y+(h/4) 根据经验,往下飘逸25%的高度,一般来说比较有帮助
edge_point_cord.extend([ (x+w//2, y+h//2), (x-w//2, y+h//2), (x-w//2, y-h//2), (x+w//2, y-h//2) ])
if w <= 15 or h <= 15: # If a bounding box is too small, we will disregard this case
return None, None
# Calculate the distance between current one and previous points for sanity check
for point in center_points: # Check all previous points
give_up_threshold = 90
if center_point[0] - point[0] >= give_up_threshold:
print("Two points are too far away and neglect the case")
return None, None
if center_point[1] - point[1] >= give_up_threshold:
print("Two points are too far away and neglect the case")
return None, None
# Append to the list
center_points.append(center_point)
if len(center_points) == 0 or len(center_points) > 2:
print("Detection Fail: We cannot detect bounding boxes")
return None, None
# Calculating the average distance among center_points
if len(center_points) == 2:
first_box, second_box = center_points
center_x = (first_box[0] + second_box[0]) / 2
center_y = (first_box[1] + second_box[1]) / 2
distance = math.sqrt(abs(first_box[0] - second_box[0])**2 + abs(first_box[1] - second_box[1])**2)
return [center_x, center_y, distance], edge_point_cord
return [*center_points[0], 100], edge_point_cord # if len(center_points) == 1, distance is 0; however, to avoid 2-1-2 box detection in sequential, we set it as a higher value
def detect_gripper(gripper_detection_model, input_dir, action_start, action_end, do_visualization, store_dir, sample_failure_collect_folder=None):
# 先处理第一个point的(这个比较重要,所以要重复3次);然后再快速处理最后一个point
# Process the first action frame by iterating next three frames and choose the closest one
first_center_points = []
edge_point_cords = []
for idx in range(3): # Repeat 3 times
action_start_path = os.path.join(input_dir, "im_"+str(action_start + idx)+".jpg")
first_center_point, edge_point_cord = read_center_point(gripper_detection_model, action_start_path, do_visualization, os.path.join(store_dir, "contact_first"+str(idx)+".jpg")) # The first frame
if idx == 0 and first_center_point is None:
message = "Cannot find the first contact point!"
print("The contact point we cannot detect is at ", action_start_path)
if sample_failure_collect_folder != "":
shutil.copyfile(action_start_path, os.path.join(sample_failure_collect_folder, str(len(os.listdir(sample_failure_collect_folder)))+".jpg") )
return (None, None, message)
if first_center_point is not None:
first_center_points.append([action_start + idx, first_center_point])
# Add edge points
print(edge_point_cord)
edge_point_cords.extend(edge_point_cord) # 我有点担心所有point就这么extend会对一些的edge case不是那么robust
# Select the closest point between two
first_center_points.sort(key=lambda x: x[1][2])
first_center_point = first_center_points[0][1][:2]
start_idx = first_center_points[0][0]
print("first_center_point is " + str(first_center_point) + " with idx " + str(start_idx))
order_idx = [start_idx, action_end]
# Find the xmin, ymin, xmax, ymax for based all three points as the bounding box for the SAM
edge_point_cords.sort(key=lambda x: x[0])
xmin = int(edge_point_cords[0][0])
xmax = int(edge_point_cords[-1][0])
edge_point_cords.sort(key=lambda x: x[1])
ymin = int(edge_point_cords[0][1])
ymax = int(edge_point_cords[-1][1])
bbox_info = (xmin, xmax, ymin, ymax)
# Process the last action frame
action_end_path = os.path.join(input_dir, "im_"+str(action_end)+".jpg")
last_center_point, edge_point_cord = read_center_point(gripper_detection_model, action_end_path, do_visualization, os.path.join(store_dir, "contact_last.jpg")) # The last frame
if last_center_point is None:
message = "Cannot find the last contact point!"
print("The contact point we cannot detect is at ", action_start_path)
if sample_failure_collect_folder != "":
store_name = str(len(os.listdir(sample_failure_collect_folder))) + ".jpg"
shutil.copyfile(action_start_path, os.path.join(sample_failure_collect_folder, store_name) )
return (None, bbox_info, message)
last_center_point = last_center_point[:2]
# Check if two center points is too close, if they are too close, we will merge to one point
merge_threshold = 30
if math.sqrt((first_center_point[0] - last_center_point[0])**2 + (first_center_point[1] - last_center_point[1])**2) <= merge_threshold:
print("Merge two points to one!")
message = "Success!"
return ([[first_center_point], order_idx], bbox_info, message)
# Return needed information
message = "Success!"
return ([[first_center_point, last_center_point], order_idx], bbox_info, message)
def visualize_this_that(base_img, bbox_info, this_that_points):
# Draw a green dot only for the start point
for point in this_that_points:
print("point is ", point)
target_horizontal, target_vertical = point
target_horizontal, target_vertical = int(target_horizontal), int(target_vertical)
dot_range = 3
for i in range(-1*dot_range, dot_range+1):
for j in range(-1*dot_range, dot_range+1):
dil_vertical, dil_horizontal = target_vertical + i, target_horizontal + j
if (0 <= dil_vertical and dil_vertical < base_img.shape[0]) and (0 <= dil_horizontal and dil_horizontal < base_img.shape[1]):
base_img[dil_vertical, dil_horizontal, :] = [0, 128, 0]
# else:
# # print("The traj is out of boundary!!!!!!!!!!!!!!!!!!!!! and we won't consider it") # 现在
# return (False, base_img)
# Draw the bounding box
xmin, xmax, ymin, ymax = bbox_info
base_img = cv2.rectangle(base_img, (xmin, ymin), (xmax, ymax), color=(0,0,255), thickness=2)
return (True, base_img)
def manage_seq_range(input_dir, store_dir, sample_failure_collect_folder, total_frames_needed,
max_original_input_tolerate, gripper_detection_model, sam_predictor, do_visualization):
# Find valid image lists
num_frames_input = 0
for file_name in os.listdir(input_dir):
if file_name.startswith("im_"):
num_frames_input += 1
for idx in range(num_frames_input):
target_path = os.path.join(input_dir, "im_"+str(idx)+".jpg")
if not os.path.exists(target_path):
print("We don't have ", target_path)
message = "Invalid error" # Make sure that every file in this order is existed, this is quite important
return (False, message)
if num_frames_input > max_original_input_tolerate:
message = "The number of frames is too long for constructing the sequence length needed"
return (False, message)
if num_frames_input < total_frames_needed:
message = "The number of frames is too short for constructing the sequence length needed"
return (False, message)
# Prepare this and that based on policy_out.pkl
policy_out_file_path = os.path.join(input_dir, "policy_out.pkl")
with open(policy_out_file_path, "rb") as f:
policy = pickle.load(f)
actions_codes = []
action_start, action_end = None, None
for idx, item in enumerate(policy):
action_value = item["actions"][-1]
if action_start is None and action_value == 0.0:
action_start = idx
if (action_start is not None) and (action_end is None) and (action_value == 1.0):
action_end = idx # Until record the first 1.0 exists after the first 0.0 appears
actions_codes.append(action_value)
if action_start is None or action_end is None:
message = "We cannot read an action_start or action_end code!"
return (False, message) # Requires to have both start and end actions (Usually, they are a pair)
print("actions_codes is ", actions_codes)
print("the start end idx we read is ", action_start, action_end)
# Detect the gripper (should return a list with exactly two x,y coordinate points)
detection_retrun_info, bbox_info, detect_message = detect_gripper(
gripper_detection_model,
input_dir,
action_start,
action_end,
do_visualization = do_visualization,
store_dir = store_dir,
sample_failure_collect_folder = sample_failure_collect_folder,
)
if detection_retrun_info is None:
return (False, detect_message)
detected_point, old_seq_idx = detection_retrun_info
print("detected_point is ", detected_point)
# Visualize if needed
base_img = cv2.imread(os.path.join(input_dir, "im_0.jpg"))
if do_visualization:
status, visual_img = visualize_this_that(base_img, bbox_info, detected_point)
if status:
cv2.imwrite(os.path.join(store_dir, "visualization.png"), visual_img)
# SAM process based on bbox_info
xmin, xmax, ymin, ymax = bbox_info
sam_predictor.set_image(np.uint8(base_img))
positive_point_cords = np.array([[ int(detected_point[0][0]), int(detected_point[0][1]) ]])
positive_point_cords = np.array(positive_point_cords)
positive_point_labels = np.ones(len(positive_point_cords))
# Predict the mask based on the point and bounding box designed
masks, scores, logits = sam_predictor.predict(
point_coords = positive_point_cords,
point_labels = positive_point_labels,
box = np.array([xmin, ymin, xmax, ymax])[None, :],
multimask_output = False,
)
print(scores)
for mask_idx, mask in enumerate(masks):
mask_img = show_mask(mask)
cv2.imwrite(os.path.join(store_dir, "mask_" + str(mask_idx) + ".png"), mask_img)
################################ Move the img ######################################
# Calculate needed parameters
division_factor = num_frames_input // total_frames_needed
remain_frames = (num_frames_input % total_frames_needed) - 1 # -1 for adaptation
# Define the gap
gaps = [division_factor for _ in range(total_frames_needed-1)]
for idx in range(remain_frames):
if idx % 2 == 0:
gaps[idx//2] += 1 # Start to end order
else:
gaps[-1*(1+(idx//2))] += 1 # End to start order
# Map the gap to the specific orders
idx_orders = [1] # 从1还是shift一下问题应该不大
for global_idx, gap in enumerate(gaps):
idx_orders.append(idx_orders[-1] + gap)
if idx_orders[-1] >= num_frames_input:
message = "Invalid error"
return (False, message)
# assert(idx_orders[-1] < num_frames_input)
assert(len(idx_orders) == total_frames_needed)
# Copy the essential files first
for global_idx, cur_idx in enumerate(idx_orders):
source_path = os.path.join(input_dir, "im_"+str(cur_idx)+".jpg")
destination_path = os.path.join(store_dir, "im_"+str(global_idx)+".jpg")
if not os.path.exists(source_path): # Theoretically, source_path must exists
message = "We couldn't find the source path. Theoretically, source_path must exists!" # 有一种可能就是我们丢失了一些地方,在cp或者本来就没有,记得统计数量
return (False, message)
shutil.copyfile(source_path, destination_path)
# Map order_idx to the cropped version
mapped_seq_idx = []
for old_idx in old_seq_idx:
tmp = []
for tmp_idx, new_idx in enumerate(range(len(idx_orders))):
tmp.append((tmp_idx, abs(old_idx - idx_orders[new_idx])))
# Sort the smallest fistance
tmp.sort(key=lambda x: x[1])
mapped_seq_idx.append(tmp[0][0])
print("Before the idx is ", old_seq_idx)
print("mapped idx is ", mapped_seq_idx)
# Write the information to new destination
f = open(os.path.join(store_dir, "data.txt"), "a")
f.write(str(mapped_seq_idx[0]) + " " + str(detected_point[0][0]) + " " + str(detected_point[0][1]) + "\n")
if len(detected_point) == 2: # Two points excluding the last idx
f.write(str(mapped_seq_idx[1]) + " " + str(detected_point[1][0]) + " " + str(detected_point[1][1]) + "\n")
f.close()
# Move lang.txt file
shutil.copyfile(os.path.join(input_dir, 'lang.txt'), os.path.join(store_dir, 'lang.txt'))
message = "Success!"
return (True, message)
if __name__ == "__main__":
# General storage setting
dataset_path = "../datasets_rob/Bridge_v2_raw"
destination_path = "../sanity_check/bridge_v2_TT14_longer_tolerance"
sample_failure_collect_folder = "" # This is to collect cases that fail for active learning
total_frames_needed = 14
max_original_input_tolerate = 56 # 40 for 14 fps; 60 for 25fps;
do_visualization = True
# YOLO model init
yolo_pretarined_path = "pretrained/yolov8n_best.pt"
gripper_detection_model = YOLO("yolov8n.yaml") # build a new model from scratch
gripper_detection_model = YOLO(yolo_pretarined_path) # load a pretrained model (recommended for training)
# SAM model init
model_type = "vit_h"
sam_pretrained_path = "pretrained/sam_vit_h_4b8939.pth"
sam = sam_model_registry[model_type](checkpoint=sam_pretrained_path).to(device="cuda")
sam_predictor = SamPredictor(sam) # There is a lot of setting here
# Make dir if needed
if os.path.exists(destination_path):
shutil.rmtree(destination_path)
os.makedirs(destination_path)
# Prepare the folder to collect failure cases
if sample_failure_collect_folder != "":
if os.path.exists(sample_failure_collect_folder):
shutil.rmtree(sample_failure_collect_folder)
os.makedirs(sample_failure_collect_folder)
# Collect the message
message_dict = collections.defaultdict(int)
store_idx = 0
for folder_name in sorted(os.listdir(dataset_path)):
input_folder_path = os.path.join(dataset_path, folder_name)
store_folder_path = os.path.join(destination_path, "0"*(6-len(str(store_idx)))+str(store_idx))
print("We are processing ", input_folder_path)
# Prepare store_folder_path folder
os.makedirs(store_folder_path)
status, message = manage_seq_range(input_folder_path, store_folder_path, sample_failure_collect_folder, total_frames_needed, max_original_input_tolerate, gripper_detection_model, sam_predictor, do_visualization)
if status: # We will only update the store_idx only when this file is successfully written
store_idx += 1
else:
print("This status failed! Message: " + message)
shutil.rmtree(store_folder_path)
# break # For debug
# Collect the infor to dict
message_dict[message] += 1
print("We have " + str(store_idx) + " valid dataset")
print("message_dict info is ", message_dict)
|