File size: 12,632 Bytes
59b2a81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import os, sys
import json
import cv2
import math
import shutil
import numpy as np
import random
import collections
from PIL import Image
import torch
from torch.utils.data import Dataset    

# Import files from the local folder
root_path = os.path.abspath('.')
sys.path.append(root_path)
from utils.img_utils import resize_with_antialiasing, numpy_to_pt



def get_video_frames(config, video_frame_path, flip = False):

    video_seq_length = config["video_seq_length"]

    # Calculate needed parameters
    num_frames_input = 0
    for file_name in os.listdir(video_frame_path):
        if file_name.startswith("im_"):
            num_frames_input += 1
    total_frames_needed = video_seq_length
    division_factor = num_frames_input // total_frames_needed
    remain_frames = (num_frames_input % total_frames_needed) - 1    # -1 for adaptation


    # Define the gap
    gaps = [division_factor for _ in range(total_frames_needed-1)]
    for idx in range(remain_frames):
        if idx % 2 == 0:
            gaps[idx//2] += 1      # Start to end order
        else:
            gaps[-1*(1+(idx//2))] += 1   # End to start order


    # Find needed file
    needed_img_path = []
    cur_idx = 0    
    for gap in gaps:
        img_path = os.path.join(video_frame_path, "im_" + str(cur_idx) + ".jpg")
        needed_img_path.append(img_path)

        # Update the idx
        cur_idx += gap
    # Append the last one
    img_path = os.path.join(video_frame_path, "im_" + str(cur_idx) + ".jpg")
    needed_img_path.append(img_path)


    # Read all img_path based on the order 
    video_frames = []
    for img_path in needed_img_path:
        if not os.path.exists(img_path):
            print("We don't have ", img_path)
        frame = cv2.imread(img_path)

        try:
            frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
        except Exception:
            print("The exception places is ", img_path)

        # Resize frames
        frame = cv2.resize(frame, (config["width"], config["height"]), interpolation = cv2.INTER_CUBIC)

        # Flip aug
        if flip:
            frame = np.fliplr(frame)

        # Collect frames
        video_frames.append(np.expand_dims(frame, axis=0))       # The frame is already RGB, there is no need to convert here.

    
    # Concatenate
    video_frames = np.concatenate(video_frames, axis=0)
    assert(len(video_frames) == video_seq_length)

    return video_frames



def tokenize_captions(prompt, tokenizer, config, is_train=True):
    '''
        Tokenize text prompt be prepared tokenizer from SD2.1
    '''

    captions = []
    if random.random() < config["empty_prompts_proportion"]:
        captions.append("")
    elif isinstance(prompt, str):
        captions.append(prompt)
    elif isinstance(prompt, (list, np.ndarray)):
        # take a random caption if there are multiple       
        captions.append(random.choice(prompt) if is_train else prompt[0])
    else:
        raise ValueError(
            f"Caption column should contain either strings or lists of strings."
        )
    
    inputs = tokenizer(
        captions, max_length = tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
    )
    return inputs.input_ids[0]



class Video_Dataset(Dataset):
    '''
        Video Dataset to load sequential frames for training with needed pre-processing
    '''
    
    def __init__(self, config, device, normalize=True, tokenizer=None):

        # Attribute variables
        self.config = config
        self.device = device
        self.normalize = normalize
        self.tokenizer = tokenizer

        # Obtain values
        self.video_seq_length = config["video_seq_length"]
        self.height = config["height"]
        self.width = config["width"]

        # Process data
        self.video_lists = []
        stats_analysis = collections.defaultdict(int)
        print("Process all files to check valid datasets....")
        for dataset_path in config["dataset_path"]:
            for video_name in sorted(os.listdir(dataset_path)):
                video_path = os.path.join(dataset_path, video_name)
                all_files = os.listdir(video_path)

                
                valid = True
                # Valid check 1: the number of files should be in sequential order
                num_frames_input = 0
                for file_name in os.listdir(video_path):
                    if file_name.startswith("im_"):
                        num_frames_input += 1
                for idx in range(num_frames_input):
                    img_path = 'im_' + str(idx) + '.jpg'
                    if img_path not in all_files:            # Should be sequential existing
                        valid = False
                        stats_analysis["incomplete_img"] += 1
                        break


                # Valid check 1.5: the number of files must be longer than video_seq_length and less than self.config["acceleration_tolerance"]*self.config["video_seq_length"]
                if num_frames_input < self.config["video_seq_length"]:
                    stats_analysis["too_little_frames"] += 1
                    valid = False
                if num_frames_input > self.config["acceleration_tolerance"] * self.config["video_seq_length"]:
                    stats_analysis["too_many_frames"] += 1
                    valid = False

                if not valid:   # SpeedUp so set in the middle here
                    continue


                # Valid check 2: language if needed
                if config["use_text"] and not os.path.exists(os.path.join(dataset_path, video_name, "lang.txt")):
                    stats_analysis["no_lang_txt"] += 1
                    valid = False


                # Valid check 3: motion if needed
                if config["motion_bucket_id"] is None:
                    flow_path = os.path.join(dataset_path, video_name, "flow.txt")
                    if "flow.txt" not in all_files:
                        stats_analysis["no_flow_txt"] += 1
                        valid = False
                    else:
                        file = open(flow_path, 'r')
                        info = file.readlines()
                        if len(info) == 0:
                            stats_analysis["no_flow_txt"] += 1
                            valid = False


                if valid:
                    self.video_lists.append(video_path)
        print("stats_analysis is ", stats_analysis)
        print("Valid dataset length is ", len(self.video_lists))

        
    def __len__(self):
        return len(self.video_lists)
    


    def _get_motion_value(self, sub_folder_path):
        ''' Read the motion value from the flow.txt file prepared; preprocess the flow to accelerate
        '''

        # Read the flow.txt
        flow_path = os.path.join(sub_folder_path, 'flow.txt')       
        file = open(flow_path, 'r')
        info = file.readlines()
        per_video_movement = float(info[0][:-2])

        # Map the raw reflected_motion_bucket_id to target range based on the number of images have
        num_frames_input = 0
        for file_name in os.listdir(sub_folder_path):   # num_frames_input is the total number of files with name begin with im_
            if file_name.startswith("im_"):
                num_frames_input += 1

        # Correct the value based on the number of frames relative to video_seq_length
        per_video_movement_correct = per_video_movement * (num_frames_input/self.config["video_seq_length"])  

        # Map from one Normal Distribution to another Normal Distribution
        z = (per_video_movement_correct - self.config["dataset_motion_mean"]) / (self.config["dataset_motion_std"] + 0.001)
        reflected_motion_bucket_id = int((z * self.config["svd_motion_std"]) + self.config["svd_motion_mean"])
        

        print("We map " + str(per_video_movement) + " to " + str(per_video_movement_correct) + " by length " + str(num_frames_input) + " to bucket_id of " + str(reflected_motion_bucket_id))
        return reflected_motion_bucket_id   
    


    def __getitem__(self, idx):
        ''' Get item by idx and pre-process by Resize and Normalize to [0, 1]
        Args:
            idx (int):                  The index to the file in the directory
        Returns:
            video_frames (torch.float32):           The Pytorch tensor format of obtained frames (max: 1.0; min: 0.0)
            reflected_motion_bucket_id (tensor):    Motion value is there is optical flow provided, else they are fixed value from config
            prompt (tensor):                        Tokenized text
        '''

        # Prepare the text if needed:
        if self.config["use_text"]:
            # Read the file
            file_path = os.path.join(self.video_lists[idx], "lang.txt")
            file = open(file_path, 'r')
            prompt = file.readlines()[0]  # Only read the first line

            if self.config["mix_ambiguous"] and os.path.exists(os.path.join(self.video_lists[idx], "processed_text.txt")):
                # If we don't have this txt file, we skip

                ######################################################## Mix up prompt ########################################################
            
                # Read the file
                file_path = os.path.join(self.video_lists[idx], "processed_text.txt")
                file = open(file_path, 'r')
                prompts = [line for line in file.readlines()]  # Only read the first line

                # Get the componenet
                action = prompts[0][:-1]    
                this = prompts[1][:-1]
                there = prompts[2][:-1]


                random_value = random.random()
                # If less than 0.4, we don't care, just use the most concrete one
                if random_value >= 0.4 and random_value < 0.6:
                    # Mask pick object to "This"
                    prompt = action + " this to " + there
                elif random_value >= 0.6 and random_value < 0.8:
                    # Mask place position to "There"
                    prompt = action + " " + this + " to there"
                elif random_value >= 0.8 and random_value < 1.0:
                    # Just be like "this to there"
                    prompt = action + " this to there"
                
                # print("New prompt is ", prompt)
                ###################################################################################################################################################
            
            # else:
            #     print("We don't have llama processed prompt at ", self.video_lists[idx])
                
        else:
            prompt = ""

        # Tokenize text prompt
        tokenized_prompt = tokenize_captions(prompt, self.tokenizer, self.config)


        # Dataset aug by chance (it is needed to check whether there is any object position words [left|right] in the prompt text)
        flip = False
        if random.random() < self.config["flip_aug_prob"]:
            if self.config["use_text"]:
                if prompt.find("left") == -1 and prompt.find("right") == -1:    # Cannot have position word, like left and right (up and down is ok)
                    flip = True
            else:
                flip = True


        # Read frames for different datasets; Currently, we have WebVid / Bridge
        if self.config["dataset_name"] == "Bridge":
            video_frames = get_video_frames(self.config, self.video_lists[idx], flip=flip)
        else:
            raise NotImplementedError("We don't support this dataset loader")


        # Scale [0, 255] -> [-1, 1]
        if self.normalize:
            video_frames = video_frames.astype(np.float32) / 127.5 - 1      # Be careful to cast to float32

        # Transform to Pytorch Tensor in the range [-1, 1]
        video_frames = numpy_to_pt(video_frames)
        # print("length of input frames has ", len(video_frames))


        # Get the motion value based on the optical flow
        if self.config["motion_bucket_id"] is None:
            reflected_motion_bucket_id = self._get_motion_value(self.video_lists[idx])   
        else:
            reflected_motion_bucket_id = self.config["motion_bucket_id"]

            
        # The tensor we returned is torch float32. We won't cast here for mixed precision training!
        return {
                "video_frames" : video_frames, 
                "reflected_motion_bucket_id" : reflected_motion_bucket_id,
                "prompt": tokenized_prompt,
                }