Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,632 Bytes
59b2a81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
import os, sys
import json
import cv2
import math
import shutil
import numpy as np
import random
import collections
from PIL import Image
import torch
from torch.utils.data import Dataset
# Import files from the local folder
root_path = os.path.abspath('.')
sys.path.append(root_path)
from utils.img_utils import resize_with_antialiasing, numpy_to_pt
def get_video_frames(config, video_frame_path, flip = False):
video_seq_length = config["video_seq_length"]
# Calculate needed parameters
num_frames_input = 0
for file_name in os.listdir(video_frame_path):
if file_name.startswith("im_"):
num_frames_input += 1
total_frames_needed = video_seq_length
division_factor = num_frames_input // total_frames_needed
remain_frames = (num_frames_input % total_frames_needed) - 1 # -1 for adaptation
# Define the gap
gaps = [division_factor for _ in range(total_frames_needed-1)]
for idx in range(remain_frames):
if idx % 2 == 0:
gaps[idx//2] += 1 # Start to end order
else:
gaps[-1*(1+(idx//2))] += 1 # End to start order
# Find needed file
needed_img_path = []
cur_idx = 0
for gap in gaps:
img_path = os.path.join(video_frame_path, "im_" + str(cur_idx) + ".jpg")
needed_img_path.append(img_path)
# Update the idx
cur_idx += gap
# Append the last one
img_path = os.path.join(video_frame_path, "im_" + str(cur_idx) + ".jpg")
needed_img_path.append(img_path)
# Read all img_path based on the order
video_frames = []
for img_path in needed_img_path:
if not os.path.exists(img_path):
print("We don't have ", img_path)
frame = cv2.imread(img_path)
try:
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
except Exception:
print("The exception places is ", img_path)
# Resize frames
frame = cv2.resize(frame, (config["width"], config["height"]), interpolation = cv2.INTER_CUBIC)
# Flip aug
if flip:
frame = np.fliplr(frame)
# Collect frames
video_frames.append(np.expand_dims(frame, axis=0)) # The frame is already RGB, there is no need to convert here.
# Concatenate
video_frames = np.concatenate(video_frames, axis=0)
assert(len(video_frames) == video_seq_length)
return video_frames
def tokenize_captions(prompt, tokenizer, config, is_train=True):
'''
Tokenize text prompt be prepared tokenizer from SD2.1
'''
captions = []
if random.random() < config["empty_prompts_proportion"]:
captions.append("")
elif isinstance(prompt, str):
captions.append(prompt)
elif isinstance(prompt, (list, np.ndarray)):
# take a random caption if there are multiple
captions.append(random.choice(prompt) if is_train else prompt[0])
else:
raise ValueError(
f"Caption column should contain either strings or lists of strings."
)
inputs = tokenizer(
captions, max_length = tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
)
return inputs.input_ids[0]
class Video_Dataset(Dataset):
'''
Video Dataset to load sequential frames for training with needed pre-processing
'''
def __init__(self, config, device, normalize=True, tokenizer=None):
# Attribute variables
self.config = config
self.device = device
self.normalize = normalize
self.tokenizer = tokenizer
# Obtain values
self.video_seq_length = config["video_seq_length"]
self.height = config["height"]
self.width = config["width"]
# Process data
self.video_lists = []
stats_analysis = collections.defaultdict(int)
print("Process all files to check valid datasets....")
for dataset_path in config["dataset_path"]:
for video_name in sorted(os.listdir(dataset_path)):
video_path = os.path.join(dataset_path, video_name)
all_files = os.listdir(video_path)
valid = True
# Valid check 1: the number of files should be in sequential order
num_frames_input = 0
for file_name in os.listdir(video_path):
if file_name.startswith("im_"):
num_frames_input += 1
for idx in range(num_frames_input):
img_path = 'im_' + str(idx) + '.jpg'
if img_path not in all_files: # Should be sequential existing
valid = False
stats_analysis["incomplete_img"] += 1
break
# Valid check 1.5: the number of files must be longer than video_seq_length and less than self.config["acceleration_tolerance"]*self.config["video_seq_length"]
if num_frames_input < self.config["video_seq_length"]:
stats_analysis["too_little_frames"] += 1
valid = False
if num_frames_input > self.config["acceleration_tolerance"] * self.config["video_seq_length"]:
stats_analysis["too_many_frames"] += 1
valid = False
if not valid: # SpeedUp so set in the middle here
continue
# Valid check 2: language if needed
if config["use_text"] and not os.path.exists(os.path.join(dataset_path, video_name, "lang.txt")):
stats_analysis["no_lang_txt"] += 1
valid = False
# Valid check 3: motion if needed
if config["motion_bucket_id"] is None:
flow_path = os.path.join(dataset_path, video_name, "flow.txt")
if "flow.txt" not in all_files:
stats_analysis["no_flow_txt"] += 1
valid = False
else:
file = open(flow_path, 'r')
info = file.readlines()
if len(info) == 0:
stats_analysis["no_flow_txt"] += 1
valid = False
if valid:
self.video_lists.append(video_path)
print("stats_analysis is ", stats_analysis)
print("Valid dataset length is ", len(self.video_lists))
def __len__(self):
return len(self.video_lists)
def _get_motion_value(self, sub_folder_path):
''' Read the motion value from the flow.txt file prepared; preprocess the flow to accelerate
'''
# Read the flow.txt
flow_path = os.path.join(sub_folder_path, 'flow.txt')
file = open(flow_path, 'r')
info = file.readlines()
per_video_movement = float(info[0][:-2])
# Map the raw reflected_motion_bucket_id to target range based on the number of images have
num_frames_input = 0
for file_name in os.listdir(sub_folder_path): # num_frames_input is the total number of files with name begin with im_
if file_name.startswith("im_"):
num_frames_input += 1
# Correct the value based on the number of frames relative to video_seq_length
per_video_movement_correct = per_video_movement * (num_frames_input/self.config["video_seq_length"])
# Map from one Normal Distribution to another Normal Distribution
z = (per_video_movement_correct - self.config["dataset_motion_mean"]) / (self.config["dataset_motion_std"] + 0.001)
reflected_motion_bucket_id = int((z * self.config["svd_motion_std"]) + self.config["svd_motion_mean"])
print("We map " + str(per_video_movement) + " to " + str(per_video_movement_correct) + " by length " + str(num_frames_input) + " to bucket_id of " + str(reflected_motion_bucket_id))
return reflected_motion_bucket_id
def __getitem__(self, idx):
''' Get item by idx and pre-process by Resize and Normalize to [0, 1]
Args:
idx (int): The index to the file in the directory
Returns:
video_frames (torch.float32): The Pytorch tensor format of obtained frames (max: 1.0; min: 0.0)
reflected_motion_bucket_id (tensor): Motion value is there is optical flow provided, else they are fixed value from config
prompt (tensor): Tokenized text
'''
# Prepare the text if needed:
if self.config["use_text"]:
# Read the file
file_path = os.path.join(self.video_lists[idx], "lang.txt")
file = open(file_path, 'r')
prompt = file.readlines()[0] # Only read the first line
if self.config["mix_ambiguous"] and os.path.exists(os.path.join(self.video_lists[idx], "processed_text.txt")):
# If we don't have this txt file, we skip
######################################################## Mix up prompt ########################################################
# Read the file
file_path = os.path.join(self.video_lists[idx], "processed_text.txt")
file = open(file_path, 'r')
prompts = [line for line in file.readlines()] # Only read the first line
# Get the componenet
action = prompts[0][:-1]
this = prompts[1][:-1]
there = prompts[2][:-1]
random_value = random.random()
# If less than 0.4, we don't care, just use the most concrete one
if random_value >= 0.4 and random_value < 0.6:
# Mask pick object to "This"
prompt = action + " this to " + there
elif random_value >= 0.6 and random_value < 0.8:
# Mask place position to "There"
prompt = action + " " + this + " to there"
elif random_value >= 0.8 and random_value < 1.0:
# Just be like "this to there"
prompt = action + " this to there"
# print("New prompt is ", prompt)
###################################################################################################################################################
# else:
# print("We don't have llama processed prompt at ", self.video_lists[idx])
else:
prompt = ""
# Tokenize text prompt
tokenized_prompt = tokenize_captions(prompt, self.tokenizer, self.config)
# Dataset aug by chance (it is needed to check whether there is any object position words [left|right] in the prompt text)
flip = False
if random.random() < self.config["flip_aug_prob"]:
if self.config["use_text"]:
if prompt.find("left") == -1 and prompt.find("right") == -1: # Cannot have position word, like left and right (up and down is ok)
flip = True
else:
flip = True
# Read frames for different datasets; Currently, we have WebVid / Bridge
if self.config["dataset_name"] == "Bridge":
video_frames = get_video_frames(self.config, self.video_lists[idx], flip=flip)
else:
raise NotImplementedError("We don't support this dataset loader")
# Scale [0, 255] -> [-1, 1]
if self.normalize:
video_frames = video_frames.astype(np.float32) / 127.5 - 1 # Be careful to cast to float32
# Transform to Pytorch Tensor in the range [-1, 1]
video_frames = numpy_to_pt(video_frames)
# print("length of input frames has ", len(video_frames))
# Get the motion value based on the optical flow
if self.config["motion_bucket_id"] is None:
reflected_motion_bucket_id = self._get_motion_value(self.video_lists[idx])
else:
reflected_motion_bucket_id = self.config["motion_bucket_id"]
# The tensor we returned is torch float32. We won't cast here for mixed precision training!
return {
"video_frames" : video_frames,
"reflected_motion_bucket_id" : reflected_motion_bucket_id,
"prompt": tokenized_prompt,
} |