File size: 12,539 Bytes
59b2a81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import os, sys
import json
import cv2
import math
import shutil
import numpy as np
import random
from PIL import Image
import torch.nn.functional as F
import torch
import os.path as osp
import time
from moviepy.editor import VideoFileClip
from torch.utils.data import Dataset    

# Import files from the local folder
root_path = os.path.abspath('.')
sys.path.append(root_path)
from utils.img_utils import resize_with_antialiasing, numpy_to_pt
from utils.optical_flow_utils import flow_to_image, filter_uv, bivariate_Gaussian
from data_loader.video_dataset import tokenize_captions


# For the 2D dilation
blur_kernel = bivariate_Gaussian(99, 10, 10, 0, grid = None, isotropic = True)


def get_thisthat_sam(config, intput_dir, store_dir = None, flip = False, verbose=False):
    '''
    Args:
        idx (int): The index to the folder we need to process
    '''

    # Read file
    file_path = os.path.join(intput_dir, "data.txt")
    file1 = open(file_path, 'r')
    Lines = file1.readlines()


    # Initial the optical flow format we want
    thisthat_condition = np.zeros((config["video_seq_length"], config["conditioning_channels"], config["height"], config["width"]), dtype=np.float32)  # The last image should be empty


    # Init the image
    sample_img = cv2.imread(os.path.join(intput_dir, "im_0.jpg"))
    org_height, org_width, _ = sample_img.shape

    # Prepare masking
    controlnet_image_index = []
    coordinate_values = []

    # Iterate all points in the txt file
    for idx in range(len(Lines)):

        # Read points
        frame_idx, horizontal, vertical = Lines[idx].split(' ')
        frame_idx, vertical, horizontal = int(frame_idx), int(float(vertical)), int(float(horizontal))

        # Read the mask frame idx
        controlnet_image_index.append(frame_idx)
        coordinate_values.append((vertical, horizontal))


        # Init the base image
        base_img = np.zeros((org_height, org_width, 3)).astype(np.float32)      # Use the original image size
        base_img.fill(255)

        # Draw square around the target position
        dot_range = 10       # Diameter
        for i in range(-1*dot_range, dot_range+1):
            for j in range(-1*dot_range, dot_range+1):
                dil_vertical, dil_horizontal = vertical + i, horizontal + j
                if (0 <= dil_vertical and dil_vertical < base_img.shape[0]) and (0 <= dil_horizontal and dil_horizontal < base_img.shape[1]):
                    if idx == 0:
                        base_img[dil_vertical][dil_horizontal] = [0, 0, 255]        # The first point should be red
                    else:
                        base_img[dil_vertical][dil_horizontal] = [0, 255, 0]        # The second point should be green to distinguish the first point
        
        # Dilate
        if config["dilate"]:
            base_img = cv2.filter2D(base_img, -1, blur_kernel)


        ##############################################################################################################################
        ### The core pipeline of processing is: Dilate -> Resize -> Range Shift -> Transpose Shape -> Store

        # Resize frames  Don't use negative and don't resize in [0,1]
        base_img = cv2.resize(base_img, (config["width"], config["height"]), interpolation = cv2.INTER_CUBIC)


        # Flip the image for aug if needed
        if flip:
            base_img = np.fliplr(base_img)


        # Channel Transform and Range Shift
        if config["conditioning_channels"] == 3:
            # Map to [0, 1] range 
            if store_dir is not None and verbose:    # For the first frame condition visualization
                cv2.imwrite(os.path.join(store_dir, "condition_TT"+str(idx)+".png"), base_img)
            base_img = base_img / 255.0         

        else:
            raise NotImplementedError()

        
        # ReOrganize shape
        base_img = base_img.transpose(2, 0, 1)  # hwc -> chw


        # Check the min max value range
        # if verbose:
        #     print("{} min, max range value is {} - {}".format(intput_dir, np.min(base_img), np.max(base_img)))


        # Write base img based on frame_idx
        thisthat_condition[frame_idx] = base_img        # Only the first frame, the rest is 0 initialized

    ##############################################################################################################################


    if config["motion_bucket_id"] is None:
        # take the motion to stats collected before
        reflected_motion_bucket_id = 200
    else:
        reflected_motion_bucket_id = config["motion_bucket_id"]
    

    # print("Motion Bucket ID is ", reflected_motion_bucket_id)
    return (thisthat_condition, reflected_motion_bucket_id, controlnet_image_index, coordinate_values)    



class Video_ThisThat_Dataset(Dataset):
    '''
        Video Dataset to load sequential frames for training with needed pre-processing and process with optical flow
    '''
    
    def __init__(self, config, device, normalize=True, tokenizer=None):
        # Attribute variables
        self.config = config
        self.device = device
        self.normalize = normalize
        self.tokenizer = tokenizer

        # Obtain values
        self.video_seq_length = config["video_seq_length"]
        self.height = config["height"]
        self.width = config["width"]

        # Process data
        self.video_lists = []
        for dataset_path in config["dataset_path"]:
            for video_name in sorted(os.listdir(dataset_path)):
                if not os.path.exists(os.path.join(dataset_path, video_name, "data.txt")):
                    continue

                self.video_lists.append(os.path.join(dataset_path, video_name))
        print("length of the dataset is ", len(self.video_lists))



        
    def __len__(self):
        return len(self.video_lists)
    

    def _extract_frame_bridge(self, idx, flip=False):
        ''' Extract the frame in video based on the needed fps from already extracted frame
        Args:
            idx (int):                  The index to the file in the directory
            flip (bool):                Bool for whether we will flip
        Returns:
            video_frames (numpy):       Extracted video frames in numpy format
        '''

        # Init the the Video Reader
        # The naming of the Bridge dataset follow a pattern: im_x.jpg, so we need to 
        video_frame_path = self.video_lists[idx]


        # Find needed file
        needed_img_path = []
        for idx in range(self.video_seq_length):
            img_path = os.path.join(video_frame_path, "im_" + str(idx) + ".jpg")
            needed_img_path.append(img_path)



        # Read all img_path based on the order 
        video_frames = []
        for img_path in needed_img_path:
            if not os.path.exists(img_path):
                print("We don't have ", img_path)
            frame = cv2.imread(img_path)

            try:
                frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
            except Exception:
                print("The exception place is ", img_path)
            # Resize frames
            frame = cv2.resize(frame, (self.width, self.height), interpolation = cv2.INTER_CUBIC)

            # Flip aug
            if flip:
                frame = np.fliplr(frame)

            # Collect frames
            video_frames.append(np.expand_dims(frame, axis=0))       # The frame is already RGB, there is no need to convert here.

        
        # Concatenate
        video_frames = np.concatenate(video_frames, axis=0)
        assert(len(video_frames) == self.video_seq_length)

        # Returns
        return video_frames




    def __getitem__(self, idx):
        ''' Get item by idx and pre-process by Resize and Normalize to [0, 1]
        Args:
            idx (int):                  The index to the file in the directory
        Returns:
            return_dict (dict):         video_frames (torch.float32) [-1, 1] and controlnet_condition (torch.float32) [0, 1]
        '''

        # Prepare the text if needed:
        if self.config["use_text"]:
            # Read the file
            file_path = os.path.join(self.video_lists[idx], "lang.txt")
            file = open(file_path, 'r')
            prompt = file.readlines()[0]  # Only read the first line

            if self.config["mix_ambiguous"] and os.path.exists(os.path.join(self.video_lists[idx], "processed_text.txt")):
                # If we don't have this txt file, we skip

                ######################################################## Mix up prompt ########################################################
            
                # Read the file
                file_path = os.path.join(self.video_lists[idx], "processed_text.txt")
                file = open(file_path, 'r')
                prompts = [line for line in file.readlines()]  # Only read the first line

                # Get the componenet
                action = prompts[0][:-1]    
                this = prompts[1][:-1]
                there = prompts[2][:-1]


                random_value = random.random()
                # If less than 0.4, we don't care, just use the most concrete one
                if random_value >= 0.4 and random_value < 0.6:
                    # Mask pick object to "This"
                    prompt = action + " this to " + there
                elif random_value >= 0.6 and random_value < 0.8:
                    # Mask place position to "There"
                    prompt = action + " " + this + " to there"
                elif random_value >= 0.8 and random_value < 1.0:
                    # Just be like "this to there"
                    prompt = action + " this to there"
                
                # print("New prompt is ", prompt)
                ###################################################################################################################################################
            
            # else:
            #     print("We don't have llama processed prompt at ", self.video_lists[idx])
                
        else:
            prompt = ""

        # Tokenize text prompt
        tokenized_prompt = tokenize_captions(prompt, self.tokenizer, self.config)



        # Dataset aug by chance (it is needed to check whether there is any object position words [left|right] in the prompt text)
        flip = False
        if random.random() < self.config["flip_aug_prob"]:
            if self.config["use_text"]:
                if prompt.find("left") == -1 and prompt.find("right") == -1:    # Cannot have position word, like left and right (up and down is ok)
                    flip = True
            else:
                flip = True


        
        # Read frames for different dataset; Currently, we have WebVid / Bridge
        if self.config["dataset_name"] == "Bridge":
            video_frames_raw = self._extract_frame_bridge(idx, flip=flip)
        else:
            raise NotImplementedError("We don't support this dataset loader")


        # Scale [0, 255] -> [-1, 1] if needed
        if self.normalize:
            video_frames = video_frames_raw.astype(np.float32) / 127.5 - 1      # Be careful to cast to float32

        # Transform to Pytorch Tensor in the range [-1, 1]
        video_frames = numpy_to_pt(video_frames)


        # Generate the pairs we need
        intput_dir = self.video_lists[idx]

        # Get the This That point information
        controlnet_condition, reflected_motion_bucket_id, controlnet_image_index, coordinate_values = get_thisthat_sam(self.config, intput_dir, flip=flip)
        controlnet_condition = torch.from_numpy(controlnet_condition)

        # Cast other value to tensor
        reflected_motion_bucket_id = torch.tensor(reflected_motion_bucket_id, dtype=torch.float32) 
        controlnet_image_index = torch.tensor(controlnet_image_index, dtype=torch.int32) 
        coordinate_values = torch.tensor(coordinate_values, dtype=torch.int32)
        

        # The tensor we returned is torch float32. We won't cast here for mixed precision training!
        return {"video_frames" : video_frames, 
                "controlnet_condition" : controlnet_condition, 
                "reflected_motion_bucket_id" : reflected_motion_bucket_id,
                "controlnet_image_index": controlnet_image_index,
                "prompt": tokenized_prompt,
                "coordinate_values": coordinate_values,     # Useless now, but I still passed back
                }