Spaces:
Sleeping
Sleeping
''' | |
This file is to match the selected frames with the bridge dataset | |
We need to use some tricks to select the item | |
''' | |
import os, sys, shutil | |
import cv2 | |
import numpy as np | |
def compare_img(imageA, imageB): | |
# the 'Mean Squared Error' between the two images is the | |
# sum of the squared difference between the two images; | |
# NOTE: the two images must have the same dimension | |
err = np.sum((imageA.astype("float") - imageB.astype("float")) ** 2) | |
err /= float(imageA.shape[0] * imageA.shape[1]) | |
# return the MSE, the lower the error, the more "similar" | |
# the two images are | |
return err | |
def search_path(dataset_path, target_path, store_txt_path): | |
# We only needs to care about Bridge v1 dataset area | |
target_img_path = os.path.join(target_path, "im_0.jpg") | |
if not os.path.exists(target_img_path): | |
print("The image we read is False") | |
return False | |
target_img = cv2.imread(target_img_path) | |
# Iterate all the folders inside | |
for scene_name in sorted(os.listdir(dataset_path)): | |
scene_dir = os.path.join(dataset_path, scene_name) | |
for task_name in sorted(os.listdir(scene_dir)): | |
task_dir = os.path.join(scene_dir, task_name) | |
for order_name in sorted(os.listdir(task_dir)): | |
order_dir = os.path.join(task_dir, order_name) | |
for time_clock in sorted(os.listdir(order_dir)): | |
if time_clock == "lmdb": | |
continue # Skip lmdb folder | |
time_dir = os.path.join(order_dir, time_clock, "raw", "traj_group0") | |
if not os.path.exists(time_dir): | |
continue | |
for traj_name in sorted(os.listdir(time_dir)): | |
traj_path = os.path.join(time_dir, traj_name) | |
if not os.path.isdir(traj_path): | |
continue | |
# Directly move policy_out_file_path; just in case there is also valuable information there | |
policy_out_file_path = os.path.join(traj_path, "policy_out.pkl") | |
if not os.path.exists(policy_out_file_path): | |
continue | |
# Check the lang txt file | |
lang_txt_file_path = os.path.join(traj_path, "lang.txt") | |
if not os.path.exists(lang_txt_file_path): | |
continue | |
for img_name in sorted(os.listdir(traj_path)): | |
if img_name != "images0": # Only consider one camera angle | |
continue | |
img_folder_path = os.path.join(traj_path, img_name) | |
if not os.path.isdir(img_folder_path): | |
continue | |
# Compare two image | |
img_path = os.path.join(img_folder_path, "im_0.jpg") | |
if not os.path.exists(img_path): | |
print(img_folder_path + " doesn't even have im_0.jpg") | |
continue | |
# print("img_folder_path is ", img_path) | |
compare_sample_img = cv2.imread(img_path) | |
# try: | |
# compare_sample_img.shape | |
# except Exception: | |
# print("The compare_sample_img cannot be red") | |
# continue | |
error = compare_img(target_img, compare_sample_img) | |
if error == 0: | |
# Continue to all the rest for at least 5 images | |
status = True | |
for idx in range (10): | |
idx_img_path = os.path.join(img_folder_path, "im_"+str(idx)+".jpg") | |
idx_target_img_path = os.path.join(target_path, "im_"+str(idx)+".jpg") | |
if not os.path.exists(idx_img_path): | |
print("The idx_img_path long idx we see only at ", idx) | |
continue | |
if not os.path.exists(idx_target_img_path): | |
print("The idx_target_img_path long idx we see only at ", idx) | |
continue | |
idx_compare_sample_img = cv2.imread(idx_img_path) | |
idx_target_img = cv2.imread(idx_target_img_path) | |
error = compare_img(idx_target_img, idx_compare_sample_img) | |
if error != 0: | |
status = False | |
break | |
if status: | |
print("We found one at ", img_path) | |
f = open(store_txt_path, "a") | |
f.write(target_path + " " + img_folder_path + "\n") | |
return True | |
return False | |
if __name__ == "__main__": | |
input_path = "/nfs/turbo/jjparkcv-turbo-large/boyangwa/datasets_rob/Bridge_v2_test_raw" | |
dataset_path = "/nfs/turbo/jjparkcv-turbo-large/boyangwa/raw/bridge_data_v2" # 直接从本地新unzip的获取,怕之前的被xuweiyi改动过 | |
store_txt_path = "match_info_v2_p1.txt" | |
start_idx = 0 | |
end_idx = 500 | |
if os.path.exists(store_txt_path): | |
os.remove(store_txt_path) | |
for img_name in sorted(os.listdir(input_path))[start_idx:end_idx]: | |
target_path = os.path.join(input_path, img_name) | |
print("We are finding for ", target_path) | |
status = search_path(dataset_path, target_path, store_txt_path) | |
if not status: | |
print("we cannot find one") |