This-and-That / curation_pipeline /match_dataset_v2.py
HikariDawn777's picture
feat: initial push
59b2a81
raw
history blame
6.15 kB
'''
This file is to match the selected frames with the bridge dataset
We need to use some tricks to select the item
'''
import os, sys, shutil
import cv2
import numpy as np
def compare_img(imageA, imageB):
# the 'Mean Squared Error' between the two images is the
# sum of the squared difference between the two images;
# NOTE: the two images must have the same dimension
err = np.sum((imageA.astype("float") - imageB.astype("float")) ** 2)
err /= float(imageA.shape[0] * imageA.shape[1])
# return the MSE, the lower the error, the more "similar"
# the two images are
return err
def search_path(dataset_path, target_path, store_txt_path):
# We only needs to care about Bridge v1 dataset area
target_img_path = os.path.join(target_path, "im_0.jpg")
if not os.path.exists(target_img_path):
print("The image we read is False")
return False
target_img = cv2.imread(target_img_path)
# Iterate all the folders inside
for scene_name in sorted(os.listdir(dataset_path)):
scene_dir = os.path.join(dataset_path, scene_name)
for task_name in sorted(os.listdir(scene_dir)):
task_dir = os.path.join(scene_dir, task_name)
for order_name in sorted(os.listdir(task_dir)):
order_dir = os.path.join(task_dir, order_name)
for time_clock in sorted(os.listdir(order_dir)):
if time_clock == "lmdb":
continue # Skip lmdb folder
time_dir = os.path.join(order_dir, time_clock, "raw", "traj_group0")
if not os.path.exists(time_dir):
continue
for traj_name in sorted(os.listdir(time_dir)):
traj_path = os.path.join(time_dir, traj_name)
if not os.path.isdir(traj_path):
continue
# Directly move policy_out_file_path; just in case there is also valuable information there
policy_out_file_path = os.path.join(traj_path, "policy_out.pkl")
if not os.path.exists(policy_out_file_path):
continue
# Check the lang txt file
lang_txt_file_path = os.path.join(traj_path, "lang.txt")
if not os.path.exists(lang_txt_file_path):
continue
for img_name in sorted(os.listdir(traj_path)):
if img_name != "images0": # Only consider one camera angle
continue
img_folder_path = os.path.join(traj_path, img_name)
if not os.path.isdir(img_folder_path):
continue
# Compare two image
img_path = os.path.join(img_folder_path, "im_0.jpg")
if not os.path.exists(img_path):
print(img_folder_path + " doesn't even have im_0.jpg")
continue
# print("img_folder_path is ", img_path)
compare_sample_img = cv2.imread(img_path)
# try:
# compare_sample_img.shape
# except Exception:
# print("The compare_sample_img cannot be red")
# continue
error = compare_img(target_img, compare_sample_img)
if error == 0:
# Continue to all the rest for at least 5 images
status = True
for idx in range (10):
idx_img_path = os.path.join(img_folder_path, "im_"+str(idx)+".jpg")
idx_target_img_path = os.path.join(target_path, "im_"+str(idx)+".jpg")
if not os.path.exists(idx_img_path):
print("The idx_img_path long idx we see only at ", idx)
continue
if not os.path.exists(idx_target_img_path):
print("The idx_target_img_path long idx we see only at ", idx)
continue
idx_compare_sample_img = cv2.imread(idx_img_path)
idx_target_img = cv2.imread(idx_target_img_path)
error = compare_img(idx_target_img, idx_compare_sample_img)
if error != 0:
status = False
break
if status:
print("We found one at ", img_path)
f = open(store_txt_path, "a")
f.write(target_path + " " + img_folder_path + "\n")
return True
return False
if __name__ == "__main__":
input_path = "/nfs/turbo/jjparkcv-turbo-large/boyangwa/datasets_rob/Bridge_v2_test_raw"
dataset_path = "/nfs/turbo/jjparkcv-turbo-large/boyangwa/raw/bridge_data_v2" # 直接从本地新unzip的获取,怕之前的被xuweiyi改动过
store_txt_path = "match_info_v2_p1.txt"
start_idx = 0
end_idx = 500
if os.path.exists(store_txt_path):
os.remove(store_txt_path)
for img_name in sorted(os.listdir(input_path))[start_idx:end_idx]:
target_path = os.path.join(input_path, img_name)
print("We are finding for ", target_path)
status = search_path(dataset_path, target_path, store_txt_path)
if not status:
print("we cannot find one")