File size: 4,786 Bytes
aa7a63c
 
 
4dfc1a8
 
596f960
4dfc1a8
4d2ca60
 
 
0448c54
aa7a63c
4dfc1a8
aa7a63c
4dfc1a8
 
4d2ca60
 
 
 
 
 
 
 
 
0679297
4d2ca60
 
4dfc1a8
 
 
 
 
0448c54
 
 
 
aa7a63c
261a8a2
 
4dfc1a8
 
 
 
 
 
 
 
 
261a8a2
4d2ca60
 
3529e1d
4d2ca60
 
62129f1
4d2ca60
 
87fff89
3529e1d
f382723
 
4dfc1a8
4500205
 
3529e1d
3fb2a8d
4d2ca60
 
5a807b9
 
488e2a0
04fb4e3
 
 
4dfc1a8
 
 
 
aa7a63c
4dfc1a8
aa7a63c
 
 
 
 
 
 
 
4dfc1a8
97e51d0
4dfc1a8
261a8a2
 
0679297
bd960a6
4dfc1a8
261a8a2
4dfc1a8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import gradio as gr
from pyvis.network import Network
import networkx as nx
import numpy as np
import pandas as pd
import os
from datasets import load_dataset
from datasets import Features
from datasets import Value
from datasets import Dataset
import matplotlib.pyplot as plt

Secret_token = os.getenv('token')

dataset = load_dataset('FDSRashid/hadith_info',data_files = 'Basic_Edge_Information.csv', token = Secret_token, split = 'train')
dataset2 = load_dataset('FDSRashid/hadith_info',data_files = 'Taraf_Info.csv', token = Secret_token, split = 'train')



features = Features({'Rawi ID': Value('int32'), 'Famous Name': Value('string'), 'Narrator Rank': Value('string'), 'Number of Narrations': Value('string')})
narrator_bios = load_dataset("FDSRashid/hadith_info", data_files = 'Teacher_Bios.csv', token = Secret_token,features=features )
narrator_bios = narrator_bios['train'].to_pandas()
narrator_bios.loc[49845, 'Narrator Rank'] = 'رسول الله'
narrator_bios.loc[49845, 'Number of Narrations'] = 0
narrator_bios['Number of Narrations'] = narrator_bios['Number of Narrations'].astype(int)
narrator_bios.loc[49845, 'Number of Narrations'] = 443471


edge_info = dataset.to_pandas()
taraf_info = dataset2.to_pandas()
cities = taraf_info['City'].unique().tolist()
min_year = int(taraf_info['Year'].min())
max_year = int(taraf_info['Year'].max())
cmap = plt.colormaps['cool']
def value_to_hex(value):
    rgba_color = cmap(value)
    return "#{:02X}{:02X}{:02X}".format(int(rgba_color[0] * 255), int(rgba_color[1] * 255), int(rgba_color[2] * 255))

def subsetEdges(city, fstyear, lstyear):
  info = taraf_info[(taraf_info['Year'] >= fstyear) & (taraf_info['City'] == city) & (taraf_info['Year'] <= lstyear)]
  narrators = edge_info[edge_info['Edge_ID'].isin(info['ID'].unique())]
  return narrators
def splitIsnad(dataframe):
  teacher_student =dataframe['Edge_Name'].str.split(' TO ')
  dataframe['Teacher'] = teacher_student.apply(lambda x: x[0])
  dataframe['Student'] = teacher_student.apply(lambda x: x[1])
  return dataframe

    
def network_visualizer(yaxis, city, fstyear,lastyr, num_nodes):
    edges = subsetEdges(city, fstyear, lastyr)
    edges_split = splitIsnad(edges).reset_index()
    #.groupby(['Teacher', 'Student']).sum()
    if edges_split.shape[0] > num_nodes:
        edge_15 = edges_split.sort_values(by=yaxis, ascending=False).head(num_nodes)
    else:
        edge_15 = edges_split.copy()

    net = Network()


    
    for _, row in edge_15.iterrows():
        source = row['Teacher']
        target = row['Student']
        attribute_value = row[yaxis]
        edge_color = value_to_hex(attribute_value)
        teacher_info = narrator_bios[narrator_bios['Rawi ID'] == row['Teacher_ID']]
        student_info = narrator_bios[narrator_bios['Rawi ID'] == row['Student_ID']]
        teacher_narrations = teacher_info['Number of Narrations'].to_list()[0]
        student_narrations = student_info['Number of Narrations'].to_list()[0]
        
        net.add_node(source, color=value_to_hex(teacher_narrations), font = {'size':30, 'color': 'orange'}, label = f"{source}\n{teacher_narrations}")
        net.add_node(target, color=value_to_hex(student_narrations), font = {'size': 20, 'color': 'red'}, label = f"{target}\n{student_narrations}")
        net.add_edge(source, target, color=edge_color, value=attribute_value, label = f"{yaxis}:{attribute_value}")


    net.barnes_hut(gravity=-5000, central_gravity=0.3, spring_length=200)
    html = net.generate_html()
    html = html.replace("'", "\"")

    
    return f"""<iframe style="width: 100%; height: 600px;margin:0 auto" name="result" allow="midi; geolocation; microphone; camera; 
    display-capture; encrypted-media;" sandbox="allow-modals allow-forms 
    allow-scripts allow-same-origin allow-popups 
    allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" 
    allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>"""


with gr.Blocks() as demo:
  Yaxis = gr.Dropdown(choices = ['Tarafs', 'Hadiths', 'Isnads', 'Books'], value = 'Tarafs', label = 'Variable to Display', info = 'Choose the variable to visualize.')  
  Places = gr.Dropdown(choices = cities, value = 'المدينه', label = 'Location')
  FirstYear = gr.Slider(min_year, max_year, value = -11, label = 'Begining', info = 'Choose the first year to display Narrators')
  Last_Year = gr.Slider(min_year, max_year, value = 9, label = 'End', info = 'Choose the  last year to display Narrators')
  num_narrators = gr.Slider(0, 2000, value = 400, label = 'Narrators', info = 'Choose the  number of Narrators to display')  
    
  btn = gr.Button('Submit')
  btn.click(fn = network_visualizer, inputs = [Yaxis, Places, FirstYear, Last_Year, num_narrators], outputs = gr.HTML())
  demo.launch()