Spaces:
Sleeping
Sleeping
File size: 6,879 Bytes
aa7a63c 4dfc1a8 596f960 4dfc1a8 4d2ca60 0448c54 aa7a63c 4dfc1a8 aa7a63c 4dfc1a8 4d2ca60 fc51b21 4d2ca60 0679297 4d2ca60 4dfc1a8 0448c54 aa7a63c 261a8a2 4dfc1a8 e144c2d 261a8a2 31c3824 e144c2d 31c3824 e144c2d 3529e1d e144c2d f382723 e144c2d dc171db e144c2d dc171db e144c2d a359c9a e144c2d 31c3824 f382723 e144c2d 488e2a0 e144c2d 4dfc1a8 e9836d4 4dfc1a8 aa7a63c 4dfc1a8 aa7a63c 4dfc1a8 97e51d0 4dfc1a8 261a8a2 dba5f66 bd960a6 4dfc1a8 261a8a2 4dfc1a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import gradio as gr
from pyvis.network import Network
import networkx as nx
import numpy as np
import pandas as pd
import os
from datasets import load_dataset
from datasets import Features
from datasets import Value
from datasets import Dataset
import matplotlib.pyplot as plt
Secret_token = os.getenv('token')
dataset = load_dataset('FDSRashid/hadith_info',data_files = 'Basic_Edge_Information.csv', token = Secret_token, split = 'train')
dataset2 = load_dataset('FDSRashid/hadith_info',data_files = 'Taraf_Info.csv', token = Secret_token, split = 'train')
features = Features({'Rawi ID': Value('int32'), 'Famous Name': Value('string'), 'Narrator Rank': Value('string'), 'Number of Narrations': Value('string'), 'Generation': Value('string')})
narrator_bios = load_dataset("FDSRashid/hadith_info", data_files = 'Teacher_Bios.csv', token = Secret_token,features=features )
narrator_bios = narrator_bios['train'].to_pandas()
narrator_bios.loc[49845, 'Narrator Rank'] = 'ุฑุณูู ุงููู'
narrator_bios.loc[49845, 'Number of Narrations'] = 0
narrator_bios['Number of Narrations'] = narrator_bios['Number of Narrations'].astype(int)
narrator_bios.loc[49845, 'Number of Narrations'] = 443471
edge_info = dataset.to_pandas()
taraf_info = dataset2.to_pandas()
cities = taraf_info['City'].unique().tolist()
min_year = int(taraf_info['Year'].min())
max_year = int(taraf_info['Year'].max())
cmap = plt.colormaps['cool']
def value_to_hex(value):
rgba_color = cmap(value)
return "#{:02X}{:02X}{:02X}".format(int(rgba_color[0] * 255), int(rgba_color[1] * 255), int(rgba_color[2] * 255))
def subsetEdges(city, fstyear, lstyear):
info = taraf_info[(taraf_info['Year'] >= fstyear) & (taraf_info['City'] == city) & (taraf_info['Year'] <= lstyear)]
narrators = edge_info[edge_info['Edge_ID'].isin(info['ID'].unique())]
return narrators
def get_node_info(node):
node_info = narrator_bios[narrator_bios['Rawi ID'] == int(node)]
student_narrations = node_info['Number of Narrations'].to_list()
if len(student_narrations):
student_narrations = student_narrations[0]
else:
student_narrations = 1
student_gen = node_info['Generation'].to_list()
if len(student_gen):
student_gen = student_gen[0]
else:
student_gen = -1
student_rank = node_info["Narrator Rank"].to_list()
if len(student_rank):
student_rank = student_rank[0]
else:
student_rank = 'ููุงู'
node_name = node_info['Famous Name'].to_list()
if len(node_name):
node_name = node_name[0]
else:
node_name = 'ููุงู'
return node_info,student_narrations,student_gen, student_rank, node_name
def network_visualizer(yaxis, city, fstyear,lastyr, num_nodes):
edges = subsetEdges(city, fstyear, lastyr).sort_values(yaxis, ascending=False).head(num_nodes)
G = nx.from_pandas_edgelist(edges, source = 'Teacher_ID', target = 'Student_ID', create_using = nx.DiGraph())
# nodes = list(G.nodes)
# node_reports = [narrator_bios[narrator_bios['Rawi ID'].astype(int) == int(x)]['Number of Narrations'].to_list()[0] for x in nodes]
# nodes_df = pd.DataFrame({'Node': nodes, 'Report': node_reports}).sort_values('Report', ascending=False).head(num_nodes)
# nodes_remove = list(set(nodes) - set(nodes_df['Node'].to_list()))
# [G.remove_nodes_from(nodes_remove)]
#.groupby(['Teacher', 'Student']).sum()
# if edges_split.shape[0] > num_nodes:
# edge_15 = edges_split.sort_values(by=yaxis, ascending=False).head(num_nodes)
# else:
# edge_15 = edges_split.copy()
net = Network(directed =True, select_menu=True, cdn_resources='remote')
for node in G.nodes:
node_info,student_narrations,student_gen, student_rank, node_name = get_node_info(node)
if node == 99999:
net.add_node(int(node), font = {'size':50, 'color': 'black'}, color = '#000000', label = f'{node_name} \n ID: {node} - Gen {student_gen}', size= 70)
else:
net.add_node(int(node), font = {'size':30, 'color': 'red'}, color = value_to_hex(student_narrations), label = f'{node_name} \n {student_rank} \n ID: {node} - Gen {student_gen}', size= 50)
for edge in G.edges:
row = edges[(edges['Teacher_ID'] == edge[0]) & (edges['Student_ID'] == edge[1])].iloc[0]
source = row['Teacher_ID']
target = row['Student_ID']
net.add_edge(int(source), int(target), color = value_to_hex(int(row[yaxis])), label = f"{row[yaxis]}", value= int(row[yaxis]))
# for _, row in edge_15.iterrows():
# source = row['Teacher']
# target = row['Student']
# attribute_value = row[yaxis]
# edge_color = value_to_hex(attribute_value)
# teacher_info = narrator_bios[narrator_bios['Rawi ID'] == row['Teacher_ID']]
# student_info = narrator_bios[narrator_bios['Rawi ID'] == row['Student_ID']]
# teacher_narrations = teacher_info['Number of Narrations'].to_list()[0]
# student_narrations = student_info['Number of Narrations'].to_list()[0]
# net.add_node(source, color=value_to_hex(teacher_narrations), font = {'size':30, 'color': 'orange'}, label = f"{source}\n{teacher_narrations}")
# net.add_node(target, color=value_to_hex(student_narrations), font = {'size': 20, 'color': 'red'}, label = f"{target}\n{student_narrations}")
# net.add_edge(source, target, color=edge_color, value=attribute_value, label = f"{yaxis}:{attribute_value}")
net.barnes_hut(gravity=-5000, central_gravity=0.1, spring_length=200)
html = net.generate_html()
html = html.replace("'", "\"")
return f"""<iframe style="width: 100%; height: 600px;margin:0 auto" name="result" allow="midi; geolocation; microphone; camera;
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
allow-scripts allow-same-origin allow-popups
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>"""
with gr.Blocks() as demo:
Yaxis = gr.Dropdown(choices = ['Tarafs', 'Hadiths', 'Isnads', 'Books'], value = 'Tarafs', label = 'Variable to Display', info = 'Choose the variable to visualize.')
Places = gr.Dropdown(choices = cities, value = 'ุงูู
ุฏููู', label = 'Location')
FirstYear = gr.Slider(min_year, max_year, value = -11, label = 'Begining', info = 'Choose the first year to display Narrators')
Last_Year = gr.Slider(min_year, max_year, value = 9, label = 'End', info = 'Choose the last year to display Narrators')
num_narrators = gr.Slider(0, 2000, value = 400, label = 'Transmissions', info = 'Choose the number of Transmissions to display')
btn = gr.Button('Submit')
btn.click(fn = network_visualizer, inputs = [Yaxis, Places, FirstYear, Last_Year, num_narrators], outputs = gr.HTML())
demo.launch() |