File size: 6,879 Bytes
aa7a63c
 
 
4dfc1a8
 
596f960
4dfc1a8
4d2ca60
 
 
0448c54
aa7a63c
4dfc1a8
aa7a63c
4dfc1a8
 
4d2ca60
 
 
fc51b21
4d2ca60
 
 
 
 
0679297
4d2ca60
 
4dfc1a8
 
 
 
 
0448c54
 
 
 
aa7a63c
261a8a2
 
4dfc1a8
 
 
e144c2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
261a8a2
31c3824
e144c2d
31c3824
 
 
 
 
e144c2d
3529e1d
e144c2d
 
 
 
f382723
e144c2d
 
 
 
dc171db
e144c2d
dc171db
e144c2d
a359c9a
e144c2d
 
31c3824
f382723
e144c2d
 
 
 
 
 
 
 
 
488e2a0
e144c2d
 
 
4dfc1a8
 
e9836d4
4dfc1a8
aa7a63c
4dfc1a8
aa7a63c
 
 
 
 
 
 
 
4dfc1a8
97e51d0
4dfc1a8
261a8a2
 
dba5f66
bd960a6
4dfc1a8
261a8a2
4dfc1a8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import gradio as gr
from pyvis.network import Network
import networkx as nx
import numpy as np
import pandas as pd
import os
from datasets import load_dataset
from datasets import Features
from datasets import Value
from datasets import Dataset
import matplotlib.pyplot as plt

Secret_token = os.getenv('token')

dataset = load_dataset('FDSRashid/hadith_info',data_files = 'Basic_Edge_Information.csv', token = Secret_token, split = 'train')
dataset2 = load_dataset('FDSRashid/hadith_info',data_files = 'Taraf_Info.csv', token = Secret_token, split = 'train')



features = Features({'Rawi ID': Value('int32'), 'Famous Name': Value('string'), 'Narrator Rank': Value('string'), 'Number of Narrations': Value('string'),  'Generation': Value('string')})
narrator_bios = load_dataset("FDSRashid/hadith_info", data_files = 'Teacher_Bios.csv', token = Secret_token,features=features )
narrator_bios = narrator_bios['train'].to_pandas()
narrator_bios.loc[49845, 'Narrator Rank'] = 'ุฑุณูˆู„ ุงู„ู„ู‡'
narrator_bios.loc[49845, 'Number of Narrations'] = 0
narrator_bios['Number of Narrations'] = narrator_bios['Number of Narrations'].astype(int)
narrator_bios.loc[49845, 'Number of Narrations'] = 443471


edge_info = dataset.to_pandas()
taraf_info = dataset2.to_pandas()
cities = taraf_info['City'].unique().tolist()
min_year = int(taraf_info['Year'].min())
max_year = int(taraf_info['Year'].max())
cmap = plt.colormaps['cool']
def value_to_hex(value):
    rgba_color = cmap(value)
    return "#{:02X}{:02X}{:02X}".format(int(rgba_color[0] * 255), int(rgba_color[1] * 255), int(rgba_color[2] * 255))

def subsetEdges(city, fstyear, lstyear):
  info = taraf_info[(taraf_info['Year'] >= fstyear) & (taraf_info['City'] == city) & (taraf_info['Year'] <= lstyear)]
  narrators = edge_info[edge_info['Edge_ID'].isin(info['ID'].unique())]
  return narrators

def get_node_info(node):
    node_info = narrator_bios[narrator_bios['Rawi ID'] == int(node)]
    student_narrations = node_info['Number of Narrations'].to_list()
    if len(student_narrations):
        student_narrations = student_narrations[0]
    else:
        student_narrations = 1
    student_gen = node_info['Generation'].to_list()
    if len(student_gen):
        student_gen = student_gen[0]
    else:
        student_gen = -1
    student_rank = node_info["Narrator Rank"].to_list()
    if len(student_rank):
        student_rank = student_rank[0]
    else:
        student_rank = 'ูู„ุงู†'
    node_name = node_info['Famous Name'].to_list()
    if len(node_name):
        node_name = node_name[0]
    else:
        node_name = 'ูู„ุงู†'
    return node_info,student_narrations,student_gen, student_rank, node_name

def network_visualizer(yaxis, city, fstyear,lastyr, num_nodes):
    edges = subsetEdges(city, fstyear, lastyr).sort_values(yaxis, ascending=False).head(num_nodes)
    G = nx.from_pandas_edgelist(edges, source = 'Teacher_ID', target = 'Student_ID', create_using = nx.DiGraph())
    # nodes = list(G.nodes)
    # node_reports = [narrator_bios[narrator_bios['Rawi ID'].astype(int) == int(x)]['Number of Narrations'].to_list()[0] for x in nodes]
    # nodes_df = pd.DataFrame({'Node': nodes, 'Report': node_reports}).sort_values('Report', ascending=False).head(num_nodes)
    # nodes_remove = list(set(nodes) - set(nodes_df['Node'].to_list()))
    # [G.remove_nodes_from(nodes_remove)]
    
    #.groupby(['Teacher', 'Student']).sum()
    # if edges_split.shape[0] > num_nodes:
    #     edge_15 = edges_split.sort_values(by=yaxis, ascending=False).head(num_nodes)
    # else:
    #     edge_15 = edges_split.copy()

    net = Network(directed =True, select_menu=True, cdn_resources='remote')
    for node in G.nodes:
        node_info,student_narrations,student_gen, student_rank, node_name = get_node_info(node)
        if node == 99999:
            net.add_node(int(node), font = {'size':50, 'color': 'black'}, color = '#000000', label = f'{node_name} \n ID: {node} - Gen {student_gen}', size= 70)  
        else:
            net.add_node(int(node), font = {'size':30, 'color': 'red'}, color = value_to_hex(student_narrations), label = f'{node_name} \n {student_rank} \n ID: {node} - Gen {student_gen}', size= 50)
    for edge in G.edges:
        row = edges[(edges['Teacher_ID'] == edge[0]) & (edges['Student_ID'] == edge[1])].iloc[0]
        source = row['Teacher_ID']
        target = row['Student_ID']
        net.add_edge(int(source), int(target), color = value_to_hex(int(row[yaxis])), label = f"{row[yaxis]}", value= int(row[yaxis]))
    
    # for _, row in edge_15.iterrows():
    #     source = row['Teacher']
    #     target = row['Student']
    #     attribute_value = row[yaxis]
    #     edge_color = value_to_hex(attribute_value)
    #     teacher_info = narrator_bios[narrator_bios['Rawi ID'] == row['Teacher_ID']]
    #     student_info = narrator_bios[narrator_bios['Rawi ID'] == row['Student_ID']]
    #     teacher_narrations = teacher_info['Number of Narrations'].to_list()[0]
    #     student_narrations = student_info['Number of Narrations'].to_list()[0]
        
    #     net.add_node(source, color=value_to_hex(teacher_narrations), font = {'size':30, 'color': 'orange'}, label = f"{source}\n{teacher_narrations}")
    #     net.add_node(target, color=value_to_hex(student_narrations), font = {'size': 20, 'color': 'red'}, label = f"{target}\n{student_narrations}")
    #     net.add_edge(source, target, color=edge_color, value=attribute_value, label = f"{yaxis}:{attribute_value}")


    net.barnes_hut(gravity=-5000, central_gravity=0.1, spring_length=200)
    html = net.generate_html()
    html = html.replace("'", "\"")

    
    return f"""<iframe style="width: 100%; height: 600px;margin:0 auto" name="result" allow="midi; geolocation; microphone; camera; 
    display-capture; encrypted-media;" sandbox="allow-modals allow-forms 
    allow-scripts allow-same-origin allow-popups 
    allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" 
    allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>"""


with gr.Blocks() as demo:
  Yaxis = gr.Dropdown(choices = ['Tarafs', 'Hadiths', 'Isnads', 'Books'], value = 'Tarafs', label = 'Variable to Display', info = 'Choose the variable to visualize.')  
  Places = gr.Dropdown(choices = cities, value = 'ุงู„ู…ุฏูŠู†ู‡', label = 'Location')
  FirstYear = gr.Slider(min_year, max_year, value = -11, label = 'Begining', info = 'Choose the first year to display Narrators')
  Last_Year = gr.Slider(min_year, max_year, value = 9, label = 'End', info = 'Choose the  last year to display Narrators')
  num_narrators = gr.Slider(0, 2000, value = 400, label = 'Transmissions', info = 'Choose the  number of Transmissions to display')  
    
  btn = gr.Button('Submit')
  btn.click(fn = network_visualizer, inputs = [Yaxis, Places, FirstYear, Last_Year, num_narrators], outputs = gr.HTML())
  demo.launch()