|
import gradio as gr |
|
from pyvis.network import Network |
|
import networkx as nx |
|
import numpy as np |
|
import pandas as pd |
|
import os |
|
from datasets import load_dataset |
|
import matplotlib.pyplot as plt |
|
|
|
Secret_token = os.getenv('token') |
|
|
|
dataset = load_dataset('FDSRashid/hadith_info',data_files = 'Basic_Edge_Information.csv', token = Secret_token, split = 'train') |
|
dataset2 = load_dataset('FDSRashid/hadith_info',data_files = 'Taraf_Info.csv', token = Secret_token, split = 'train') |
|
edge_info = dataset.to_pandas() |
|
taraf_info = dataset2.to_pandas() |
|
cities = taraf_info['City'].unique().tolist() |
|
min_year = int(taraf_info['Year'].min()) |
|
max_year = int(taraf_info['Year'].max()) |
|
cmap = plt.colormaps['cool'] |
|
def value_to_hex(value): |
|
rgba_color = cmap(value) |
|
return "#{:02X}{:02X}{:02X}".format(int(rgba_color[0] * 255), int(rgba_color[1] * 255), int(rgba_color[2] * 255)) |
|
|
|
def subsetEdges(city, year): |
|
info = taraf_info[(taraf_info['Year'] == year) & (taraf_info['City'] == city)] |
|
narrators = edge_info[edge_info['Edge_ID'].isin(info['ID'].unique())] |
|
return narrators |
|
def splitIsnad(dataframe): |
|
teacher_student =dataframe['Edge_Name'].str.split(' TO ') |
|
dataframe['Teacher'] = teacher_student.apply(lambda x: x[0]) |
|
dataframe['Student'] = teacher_student.apply(lambda x: x[1]) |
|
return dataframe |
|
|
|
|
|
def network_visualizer(city, year, num_nodes): |
|
edge_15 = splitIsnad(subsetEdges(city, year))[['Teacher', 'Student', 'Hadiths']].groupby(['Teacher', 'Student']).sum().reset_index().sample(num_nodes) |
|
net = Network() |
|
for _, row in edge_15.iterrows(): |
|
source = row['Teacher'] |
|
target = row['Student'] |
|
attribute_value = row['Hadiths'] |
|
edge_color = value_to_hex(attribute_value) |
|
|
|
net.add_node(source, color=value_to_hex(attribute_value), font = {'size':30, 'color': 'orange'}) |
|
net.add_node(target, color=value_to_hex(attribute_value) , font = {'size': 20, 'color': 'red'}) |
|
net.add_edge(source, target, color=edge_color, value=attribute_value) |
|
|
|
|
|
net.barnes_hut(gravity=-5000, central_gravity=0.3, spring_length=200) |
|
html = net.generate_html() |
|
html = html.replace("'", "\"") |
|
|
|
|
|
return f"""<iframe style="width: 100%; height: 600px;margin:0 auto" name="result" allow="midi; geolocation; microphone; camera; |
|
display-capture; encrypted-media;" sandbox="allow-modals allow-forms |
|
allow-scripts allow-same-origin allow-popups |
|
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" |
|
allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>""" |
|
|
|
|
|
with gr.Blocks() as demo: |
|
Places = gr.Dropdown(choices = cities, value = 'ุงูู
ุฏููู', label = 'Location') |
|
Last_Year = gr.Slider(min_year, max_year, value = 9, label = 'End', info = 'Choose the year to display Narrators') |
|
num_narrators = gr.Slider(0, 700, value = 400, label = 'Narrators', info = 'Choose the number of Narrators to display') |
|
|
|
btn = gr.Button('Submit') |
|
btn.click(fn = network_visualizer, inputs = [Places, Last_Year, num_narrators], outputs = gr.HTML()) |
|
demo.launch() |