|
import gradio as gr |
|
from pyvis.network import Network |
|
import networkx as nx |
|
import numpy as np |
|
import pandas as pd |
|
import os |
|
from datasets import load_dataset |
|
from datasets import Features |
|
from datasets import Value |
|
from datasets import Dataset |
|
import matplotlib.pyplot as plt |
|
|
|
Secret_token = os.getenv('token') |
|
|
|
dataset = load_dataset('FDSRashid/hadith_info',data_files = 'Basic_Edge_Information.csv', token = Secret_token, split = 'train') |
|
dataset2 = load_dataset('FDSRashid/hadith_info',data_files = 'Taraf_Info.csv', token = Secret_token, split = 'train') |
|
|
|
|
|
|
|
features = Features({'Rawi ID': Value('int32'), 'Famous Name': Value('string'), 'Narrator Rank': Value('string'), 'Number of Narrations': Value('string'), 'Generation': Value('string')}) |
|
narrator_bios = load_dataset("FDSRashid/hadith_info", data_files = 'Teacher_Bios.csv', token = Secret_token,features=features ) |
|
narrator_bios = narrator_bios['train'].to_pandas() |
|
narrator_bios.loc[49845, 'Narrator Rank'] = 'ุฑุณูู ุงููู' |
|
narrator_bios.loc[49845, 'Number of Narrations'] = 0 |
|
narrator_bios['Number of Narrations'] = narrator_bios['Number of Narrations'].astype(int) |
|
narrator_bios.loc[49845, 'Number of Narrations'] = 443471 |
|
|
|
|
|
edge_info = dataset.to_pandas() |
|
taraf_info = dataset2.to_pandas() |
|
cities = taraf_info['City'].unique().tolist() |
|
min_year = int(taraf_info['Year'].min()) |
|
max_year = int(taraf_info['Year'].max()) |
|
cmap = plt.colormaps['cool'] |
|
def value_to_hex(value): |
|
rgba_color = cmap(value) |
|
return "#{:02X}{:02X}{:02X}".format(int(rgba_color[0] * 255), int(rgba_color[1] * 255), int(rgba_color[2] * 255)) |
|
|
|
def subsetEdges(city, fstyear, lstyear): |
|
info = taraf_info[(taraf_info['Year'] >= fstyear) & (taraf_info['City'] == city) & (taraf_info['Year'] <= lstyear)] |
|
narrators = edge_info[edge_info['Edge_ID'].isin(info['ID'].unique())] |
|
return narrators |
|
|
|
def get_node_info(node): |
|
node_info = narrator_bios[narrator_bios['Rawi ID'] == int(node)] |
|
student_narrations = node_info['Number of Narrations'].to_list() |
|
if len(student_narrations): |
|
student_narrations = student_narrations[0] |
|
else: |
|
student_narrations = 1 |
|
student_gen = node_info['Generation'].to_list() |
|
if len(student_gen): |
|
student_gen = student_gen[0] |
|
else: |
|
student_gen = -1 |
|
student_rank = node_info["Narrator Rank"].to_list() |
|
if len(student_rank): |
|
student_rank = student_rank[0] |
|
else: |
|
student_rank = 'ููุงู' |
|
node_name = node_info['Famous Name'].to_list() |
|
if len(node_name): |
|
node_name = node_name[0] |
|
else: |
|
node_name = 'ููุงู' |
|
return node_info,student_narrations,student_gen, student_rank, node_name |
|
|
|
def network_visualizer(yaxis, city, fstyear,lastyr, num_nodes): |
|
edges = subsetEdges(city, fstyear, lastyr) |
|
|
|
G = nx.from_pandas_edgelist(edges, source = 'Teacher_ID', target = 'Student_ID', create_using = nx.DiGraph()) |
|
nodes = list(G.nodes) |
|
node_reports = [narrator_bios[narrator_bios['Rawi ID'].astype(int) == int(x)]['Number of Narrations'].to_list()[0] for x in nodes] |
|
nodes_df = pd.DataFrame({'Node': nodes, 'Report': node_reports}).sort_values('Report', ascending=False).head(num_nodes) |
|
nodes_remove = list(set(nodes) - set(nodes_df['Node'].to_list())) |
|
[G.remove_nodes_from(nodes_remove)] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
net = Network(directed =True, select_menu=True, cdn_resources='remote') |
|
for node in G.nodes: |
|
node_info,student_narrations,student_gen, student_rank, node_name = get_node_info(node) |
|
if node == 99999: |
|
net.add_node(int(node), font = {'size':50, 'color': 'black'}, color = '#000000', label = f'{node_name} \n ID: {node} - Gen {student_gen}', size= 70) |
|
else: |
|
net.add_node(int(node), font = {'size':30, 'color': 'red'}, color = value_to_hex(student_narrations), label = f'{node_name} \n {student_rank} \n ID: {node} - Gen {student_gen}', size= 50) |
|
for edge in G.edges: |
|
row = edges[(edges['Teacher_ID'] == edge[0]) & (edges['Student_ID'] == edge[1])].iloc[0] |
|
source = row['Teacher_ID'] |
|
target = row['Student_ID'] |
|
net.add_edge(int(source), int(target), color = value_to_hex(int(row[yaxis])), label = f"{row[yaxis]}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
net.barnes_hut(gravity=-5000, central_gravity=0.1, spring_length=200) |
|
html = net.generate_html() |
|
html = html.replace("'", "\"") |
|
|
|
|
|
return f"""<iframe style="width: 100%; height: 600px;margin:0 auto" name="result" allow="midi; geolocation; microphone; camera; |
|
display-capture; encrypted-media;" sandbox="allow-modals allow-forms |
|
allow-scripts allow-same-origin allow-popups |
|
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" |
|
allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>""" |
|
|
|
|
|
with gr.Blocks() as demo: |
|
Yaxis = gr.Dropdown(choices = ['Tarafs', 'Hadiths', 'Isnads', 'Books'], value = 'Tarafs', label = 'Variable to Display', info = 'Choose the variable to visualize.') |
|
Places = gr.Dropdown(choices = cities, value = 'ุงูู
ุฏููู', label = 'Location') |
|
FirstYear = gr.Slider(min_year, max_year, value = -11, label = 'Begining', info = 'Choose the first year to display Narrators') |
|
Last_Year = gr.Slider(min_year, max_year, value = 9, label = 'End', info = 'Choose the last year to display Narrators') |
|
num_narrators = gr.Slider(0, 2000, value = 400, label = 'Narrators', info = 'Choose the number of Narrators to display') |
|
|
|
btn = gr.Button('Submit') |
|
btn.click(fn = network_visualizer, inputs = [Yaxis, Places, FirstYear, Last_Year, num_narrators], outputs = gr.HTML()) |
|
demo.launch() |