Spaces:
Sleeping
Sleeping
import gradio as gr | |
from pyvis.network import Network | |
import networkx as nx | |
import numpy as np | |
import pandas as pd | |
import os | |
from datasets import load_dataset | |
from datasets import Features | |
from datasets import Value | |
from datasets import Dataset | |
import matplotlib.pyplot as plt | |
Secret_token = os.getenv('token') | |
dataset = load_dataset('FDSRashid/hadith_info',data_files = 'Basic_Edge_Information.csv', token = Secret_token, split = 'train') | |
dataset2 = load_dataset('FDSRashid/hadith_info',data_files = 'Taraf_Info.csv', token = Secret_token, split = 'train') | |
features = Features({'Rawi ID': Value('int32'), 'Famous Name': Value('string'), 'Narrator Rank': Value('string'), 'Number of Narrations': Value('string'), 'Generation': Value('string')}) | |
narrator_bios = load_dataset("FDSRashid/hadith_info", data_files = 'Teacher_Bios.csv', token = Secret_token,features=features ) | |
narrator_bios = narrator_bios['train'].to_pandas() | |
narrator_bios.loc[49845, 'Narrator Rank'] = 'ุฑุณูู ุงููู' | |
narrator_bios.loc[49845, 'Number of Narrations'] = 0 | |
narrator_bios['Number of Narrations'] = narrator_bios['Number of Narrations'].astype(int) | |
narrator_bios.loc[49845, 'Number of Narrations'] = 443471 | |
edge_info = dataset.to_pandas() | |
taraf_info = dataset2.to_pandas() | |
cities = taraf_info['City'].unique().tolist() | |
min_year = int(taraf_info['Year'].min()) | |
max_year = int(taraf_info['Year'].max()) | |
cmap = plt.colormaps['cool'] | |
def value_to_hex(value): | |
rgba_color = cmap(value) | |
return "#{:02X}{:02X}{:02X}".format(int(rgba_color[0] * 255), int(rgba_color[1] * 255), int(rgba_color[2] * 255)) | |
def subsetEdges(city, fstyear, lstyear): | |
info = taraf_info[(taraf_info['Year'] >= fstyear) & (taraf_info['City'] == city) & (taraf_info['Year'] <= lstyear)] | |
narrators = edge_info[edge_info['Edge_ID'].isin(info['ID'].unique())] | |
return narrators | |
def get_node_info(node): | |
node_info = narrator_bios[narrator_bios['Rawi ID'] == int(node)] | |
student_narrations = node_info['Number of Narrations'].to_list() | |
if len(student_narrations): | |
student_narrations = student_narrations[0] | |
else: | |
student_narrations = 1 | |
student_gen = node_info['Generation'].to_list() | |
if len(student_gen): | |
student_gen = student_gen[0] | |
else: | |
student_gen = -1 | |
student_rank = node_info["Narrator Rank"].to_list() | |
if len(student_rank): | |
student_rank = student_rank[0] | |
else: | |
student_rank = 'ููุงู' | |
node_name = node_info['Famous Name'].to_list() | |
if len(node_name): | |
node_name = node_name[0] | |
else: | |
node_name = 'ููุงู' | |
return node_info,student_narrations,student_gen, student_rank, node_name | |
def network_visualizer(yaxis, city, fstyear,lastyr, num_nodes): | |
edges = subsetEdges(city, fstyear, lastyr).sort_values(yaxis, ascending=False).head(num_nodes) | |
G = nx.from_pandas_edgelist(edges, source = 'Teacher_ID', target = 'Student_ID', create_using = nx.DiGraph()) | |
# nodes = list(G.nodes) | |
# node_reports = [narrator_bios[narrator_bios['Rawi ID'].astype(int) == int(x)]['Number of Narrations'].to_list()[0] for x in nodes] | |
# nodes_df = pd.DataFrame({'Node': nodes, 'Report': node_reports}).sort_values('Report', ascending=False).head(num_nodes) | |
# nodes_remove = list(set(nodes) - set(nodes_df['Node'].to_list())) | |
# [G.remove_nodes_from(nodes_remove)] | |
#.groupby(['Teacher', 'Student']).sum() | |
# if edges_split.shape[0] > num_nodes: | |
# edge_15 = edges_split.sort_values(by=yaxis, ascending=False).head(num_nodes) | |
# else: | |
# edge_15 = edges_split.copy() | |
net = Network(directed =True, select_menu=True, cdn_resources='remote') | |
for node in G.nodes: | |
node_info,student_narrations,student_gen, student_rank, node_name = get_node_info(node) | |
if node == 99999: | |
net.add_node(int(node), font = {'size':50, 'color': 'black'}, color = '#000000', label = f'{node_name} \n ID: {node} - Gen {student_gen}', size= 70) | |
else: | |
net.add_node(int(node), font = {'size':30, 'color': 'red'}, color = value_to_hex(student_narrations), label = f'{node_name} \n {student_rank} \n ID: {node} - Gen {student_gen}', size= 50) | |
for edge in G.edges: | |
row = edges[(edges['Teacher_ID'] == edge[0]) & (edges['Student_ID'] == edge[1])].iloc[0] | |
source = row['Teacher_ID'] | |
target = row['Student_ID'] | |
net.add_edge(int(source), int(target), color = value_to_hex(int(row[yaxis])), label = f"{row[yaxis]}", value= int(row[yaxis])) | |
# for _, row in edge_15.iterrows(): | |
# source = row['Teacher'] | |
# target = row['Student'] | |
# attribute_value = row[yaxis] | |
# edge_color = value_to_hex(attribute_value) | |
# teacher_info = narrator_bios[narrator_bios['Rawi ID'] == row['Teacher_ID']] | |
# student_info = narrator_bios[narrator_bios['Rawi ID'] == row['Student_ID']] | |
# teacher_narrations = teacher_info['Number of Narrations'].to_list()[0] | |
# student_narrations = student_info['Number of Narrations'].to_list()[0] | |
# net.add_node(source, color=value_to_hex(teacher_narrations), font = {'size':30, 'color': 'orange'}, label = f"{source}\n{teacher_narrations}") | |
# net.add_node(target, color=value_to_hex(student_narrations), font = {'size': 20, 'color': 'red'}, label = f"{target}\n{student_narrations}") | |
# net.add_edge(source, target, color=edge_color, value=attribute_value, label = f"{yaxis}:{attribute_value}") | |
net.barnes_hut(gravity=-5000, central_gravity=0.1, spring_length=200) | |
html = net.generate_html() | |
html = html.replace("'", "\"") | |
return f"""<iframe style="width: 100%; height: 600px;margin:0 auto" name="result" allow="midi; geolocation; microphone; camera; | |
display-capture; encrypted-media;" sandbox="allow-modals allow-forms | |
allow-scripts allow-same-origin allow-popups | |
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" | |
allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>""" | |
with gr.Blocks() as demo: | |
Yaxis = gr.Dropdown(choices = ['Tarafs', 'Hadiths', 'Isnads', 'Books'], value = 'Tarafs', label = 'Variable to Display', info = 'Choose the variable to visualize.') | |
Places = gr.Dropdown(choices = cities, value = 'ุงูู ุฏููู', label = 'Location') | |
FirstYear = gr.Slider(min_year, max_year, value = -11, label = 'Begining', info = 'Choose the first year to display Narrators') | |
Last_Year = gr.Slider(min_year, max_year, value = 9, label = 'End', info = 'Choose the last year to display Narrators') | |
num_narrators = gr.Slider(0, 2000, value = 400, label = 'Transmissions', info = 'Choose the number of Transmissions to display') | |
btn = gr.Button('Submit') | |
btn.click(fn = network_visualizer, inputs = [Yaxis, Places, FirstYear, Last_Year, num_narrators], outputs = gr.HTML()) | |
demo.launch() |