import gradio as gr from pyvis.network import Network import networkx as nx import numpy as np import pandas as pd import os from datasets import load_dataset import matplotlib.pyplot as plt Secret_token = os.getenv('token') dataset = load_dataset('FDSRashid/hadith_info',data_files = 'Basic_Edge_Information.csv', token = Secret_token, split = 'train') dataset2 = load_dataset('FDSRashid/hadith_info',data_files = 'Taraf_Info.csv', token = Secret_token, split = 'train') edge_info = dataset.to_pandas() taraf_info = dataset2.to_pandas() cities = taraf_info['City'].unique().tolist() min_year = int(taraf_info['Year'].min()) max_year = int(taraf_info['Year'].max()) cmap = plt.colormaps['cool'] def value_to_hex(value): rgba_color = cmap(value) return "#{:02X}{:02X}{:02X}".format(int(rgba_color[0] * 255), int(rgba_color[1] * 255), int(rgba_color[2] * 255)) def subsetEdges(city, year): info = taraf_info[(taraf_info['Year'] == year) & (taraf_info['City'] == city)] narrators = edge_info[edge_info['Edge_ID'].isin(info['ID'].unique())] return narrators def splitIsnad(dataframe): teacher_student =dataframe['Edge_Name'].str.split(' TO ') dataframe['Teacher'] = teacher_student.apply(lambda x: x[0]) dataframe['Student'] = teacher_student.apply(lambda x: x[1]) return dataframe def network_visualizer(city, year, num_nodes): edges = splitIsnad(subsetEdges(city, year))[['Teacher', 'Student', 'Hadiths']].groupby(['Teacher', 'Student']).sum().reset_index() if edges.shape[0] > num_nodes: edge_15 = edges.sample(num_nodes) else: edge_15 = edges.copy() teacher_hadiths = edge_15[['Teacher', 'Hadiths']].groupby('Teacher').sum().reset_index() net = Network() # Create dictionaries to store node roles and colors based on attribute values node_roles = {} node_colors = {} for _, row in edge_15.iterrows(): source = row['Teacher'] target = row['Student'] attribute_value = row['Hadiths'] edge_color = value_to_hex(attribute_value) hadith_count = teacher_hadiths[teacher_hadiths['Teacher'] == source]['Hadiths'].to_list()[0] edge_color = value_to_hex(attribute_value) net.add_node(source, color=value_to_hex(hadith_count), font = {'size':30, 'color': 'orange'}, label = f"{source}\nHadiths: {hadith_count}") net.add_node(target, color=value_to_hex(attribute_value) , font = {'size': 20, 'color': 'red'}, label = f"{target}\nHadiths: {attribute_value}") net.add_edge(source, target, color=edge_color, value=attribute_value) net.barnes_hut(gravity=-5000, central_gravity=0.3, spring_length=200) html = net.generate_html() html = html.replace("'", "\"") return f"""""" with gr.Blocks() as demo: Places = gr.Dropdown(choices = cities, value = 'المدينه', label = 'Location') Last_Year = gr.Slider(min_year, max_year, value = 9, label = 'End', info = 'Choose the year to display Narrators') num_narrators = gr.Slider(0, 700, value = 400, label = 'Narrators', info = 'Choose the number of Narrators to display') btn = gr.Button('Submit') btn.click(fn = network_visualizer, inputs = [Places, Last_Year, num_narrators], outputs = gr.HTML()) demo.launch()