import gradio as gr from pyvis.network import Network import networkx as nx import numpy as np import pandas as pd import os from datasets import load_dataset from datasets import Features from datasets import Value from datasets import Dataset import matplotlib.pyplot as plt Secret_token = os.getenv('token') dataset = load_dataset('FDSRashid/hadith_info',data_files = 'Basic_Edge_Information.csv', token = Secret_token, split = 'train') dataset2 = load_dataset('FDSRashid/hadith_info',data_files = 'Taraf_Info.csv', token = Secret_token, split = 'train') features = Features({'Rawi ID': Value('int32'), 'Famous Name': Value('string'), 'Narrator Rank': Value('string'), 'Number of Narrations': Value('string')}) narrator_bios = load_dataset("FDSRashid/hadith_info", data_files = 'Teacher_Bios.csv', token = Secret_token,features=features ) narrator_bios = narrator_bios['train'].to_pandas() narrator_bios.loc[49845, 'Narrator Rank'] = 'رسول الله' narrator_bios.loc[49845, 'Number of Narrations'] = 0 narrator_bios['Number of Narrations'] = narrator_bios['Number of Narrations'].astype(int) narrator_bios.loc[49845, 'Number of Narrations'] = 443471 edge_info = dataset.to_pandas() taraf_info = dataset2.to_pandas() cities = taraf_info['City'].unique().tolist() min_year = int(taraf_info['Year'].min()) max_year = int(taraf_info['Year'].max()) cmap = plt.colormaps['cool'] def value_to_hex(value): rgba_color = cmap(value) return "#{:02X}{:02X}{:02X}".format(int(rgba_color[0] * 255), int(rgba_color[1] * 255), int(rgba_color[2] * 255)) def subsetEdges(city, fstyear, lstyear): info = taraf_info[(taraf_info['Year'] >= fstyear) & (taraf_info['City'] == city) & (taraf_info['Year'] <= lstyear)] narrators = edge_info[edge_info['Edge_ID'].isin(info['ID'].unique())] return narrators def splitIsnad(dataframe): teacher_student =dataframe['Edge_Name'].str.split(' TO ') dataframe['Teacher'] = teacher_student.apply(lambda x: x[0]) dataframe['Student'] = teacher_student.apply(lambda x: x[1]) return dataframe def network_visualizer(yaxis, city, fstyear,lastyr, num_nodes): edges = subsetEdges(city, fstyear, lastyr) edges_split = splitIsnad(edges).reset_index() #.groupby(['Teacher', 'Student']).sum() if edges_split.shape[0] > num_nodes: edge_15 = edges_split.sort_values(by=yaxis, ascending=False).head(num_nodes) else: edge_15 = edges_split.copy() net = Network() for _, row in edge_15.iterrows(): source = row['Teacher'] target = row['Student'] attribute_value = row[yaxis] edge_color = value_to_hex(attribute_value) teacher_info = narrator_bios[narrator_bios['Rawi ID'] == row['Teacher_ID']] student_info = narrator_bios[narrator_bios['Rawi ID'] == row['Student_ID']] teacher_narrations = teacher_info['Number of Narrations'].to_list()[0] student_narrations = student_info['Number of Narrations'].to_list()[0] net.add_node(source, color=value_to_hex(teacher_narrations), font = {'size':30, 'color': 'orange'}, label = f"{source}\n{teacher_narrations}") net.add_node(target, color=value_to_hex(student_narrations), font = {'size': 20, 'color': 'red'}, label = f"{target}\n{student_narrations}") net.add_edge(source, target, color=edge_color, value=attribute_value, label = f"{yaxis}:{attribute_value}") net.barnes_hut(gravity=-5000, central_gravity=0.3, spring_length=200) html = net.generate_html() html = html.replace("'", "\"") return f"""""" with gr.Blocks() as demo: Yaxis = gr.Dropdown(choices = ['Tarafs', 'Hadiths', 'Isnads', 'Books'], value = 'Tarafs', label = 'Variable to Display', info = 'Choose the variable to visualize.') Places = gr.Dropdown(choices = cities, value = 'المدينه', label = 'Location') FirstYear = gr.Slider(min_year, max_year, value = -11, label = 'Begining', info = 'Choose the first year to display Narrators') Last_Year = gr.Slider(min_year, max_year, value = 9, label = 'End', info = 'Choose the last year to display Narrators') num_narrators = gr.Slider(0, 2000, value = 400, label = 'Narrators', info = 'Choose the number of Narrators to display') btn = gr.Button('Submit') btn.click(fn = network_visualizer, inputs = [Yaxis, Places, FirstYear, Last_Year, num_narrators], outputs = gr.HTML()) demo.launch()