Spaces:
Sleeping
Sleeping
File size: 13,565 Bytes
c71a7d8 a116d30 e072981 448861d c71a7d8 261d935 c71a7d8 a116d30 261d935 c71a7d8 8edff27 c71a7d8 cffe818 a116d30 448861d c71a7d8 a116d30 5d223db a116d30 c71a7d8 5d223db 028d3cf b8be8d2 2b5e2b5 5d223db c71a7d8 5d223db 261d935 22de721 5d223db 3a572d4 261d935 a116d30 fa12504 261d935 5d223db 22de721 c71a7d8 a116d30 97ebd68 261d935 97ebd68 261d935 97ebd68 5ca5481 97ebd68 aef4401 97ebd68 46cc9fe 97ebd68 142c25c cdbb8ad 142c25c 261d935 478a03c 261d935 142c25c 957c876 261d935 c71a7d8 261d935 c71a7d8 3291a65 028d3cf 3291a65 e78a4d2 028d3cf d5207f2 248b1ce d5207f2 248b1ce d5207f2 aef4401 248b1ce d5207f2 248b1ce d5207f2 248b1ce d5207f2 02d71bd a116d30 c71a7d8 3291a65 02d71bd 3291a65 a2e40dc 3291a65 7bf20fc 02d71bd e78a4d2 02d71bd 028d3cf 02d71bd 4a367b3 e78a4d2 3291a65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import gradio as gr
from pyvis.network import Network
import networkx as nx
import numpy as np
import pandas as pd
import os
from datasets import load_dataset
from datasets import Features
from datasets import Value
from datasets import Dataset
import matplotlib.pyplot as plt
import re
pattern = r'"(.*?)"'
# this pattern captures anything in a double quotes.
Secret_token = os.getenv('HF_token')
dataset = load_dataset('FDSRashid/hadith_info',data_files = 'Basic_Edge_Information.csv', token = Secret_token, split = 'train')
edge_info = dataset.to_pandas()
features = Features({'Rawi ID': Value('int32'), 'Famous Name': Value('string'), 'Narrator Rank': Value('string'), 'Number of Narrations': Value('string'), 'Generation': Value('string')})
narrator_bios = load_dataset("FDSRashid/hadith_info", data_files = 'Teacher_Bios.csv', token = Secret_token,features=features )
narrator_bios = narrator_bios['train'].to_pandas()
narrator_bios.loc[49845, 'Narrator Rank'] = 'ุฑุณูู ุงููู'
narrator_bios.loc[49845, 'Number of Narrations'] = 0
narrator_bios['Number of Narrations'] = narrator_bios['Number of Narrations'].astype(int)
narrator_bios.loc[49845, 'Number of Narrations'] = 327512
# 8125 Narrators have no Generation, listed in dataset as None
narrator_bios['Generation'] = narrator_bios['Generation'].replace([None], [-1])
narrator_bios['Generation'] = narrator_bios['Generation'].astype(int)
features = Features({'matn': Value('string'), 'taraf_ID': Value('string'), 'bookid_hadithid': Value('string')})
dataset = load_dataset("FDSRashid/hadith_info", data_files = 'All_Matns.csv',token = Secret_token, features = features)
matn_info = dataset['train'].to_pandas()
matn_info = matn_info.drop(97550)
matn_info = matn_info.drop(307206)
matn_info['taraf_ID'] = matn_info['taraf_ID'].replace('KeyAbsent', -1)
matn_info['taraf_ID'] = matn_info['taraf_ID'].astype(int)
# Isnad Info Hadiths column is structured like {"BookNum_HadithNum", ...} for each edge
isnad_info = load_dataset('FDSRashid/hadith_info',token = Secret_token, data_files = 'isnad_info.csv', split = 'train').to_pandas()
isnad_info['Hadiths Cleaned'] = isnad_info['Hadiths'].apply(lambda x: [re.findall(pattern, string)[0].split("_") for string in x[1:-1].split(',')])
# Hadiths Cleaned is a list of lists, each sub-list is Book Id, Hadith ID
taraf_max = np.max(matn_info['taraf_ID'].unique())
isnad_info['Tarafs Cleaned'] = isnad_info['Tarafs'].apply(lambda x: np.array([int(i.strip(' ')) for i in x[1:-1].split(',')]))
cmap = plt.colormaps['cool']
books = load_dataset('FDSRashid/Hadith_info', data_files='Books.csv', token = Secret_token)['train'].to_pandas()
matn_info['Book_ID'] = matn_info['bookid_hadithid'].apply(lambda x: int(x.split('_')[0]))
matn_info['Hadith Number'] = matn_info['bookid_hadithid'].apply(lambda x: int(x.split('_')[1]))
matn_info = pd.merge(matn_info, books, on='Book_ID')
def value_to_hex(value):
rgba_color = cmap(value)
return "#{:02X}{:02X}{:02X}".format(int(rgba_color[0] * 255), int(rgba_color[1] * 255), int(rgba_color[2] * 255))
#edge_info, matn_info, narrator_bios, isnad_info
def visualize_isnad(taraf_num, yaxis):
taraf_hadith = matn_info[matn_info['taraf_ID'] == taraf_num]['bookid_hadithid'].to_list()
taraf_matns = matn_info[matn_info['taraf_ID'] == taraf_num]['matn'].to_list()
taraf_hadith_split = [i.split('_') for i in taraf_hadith]
taraf_book = matn_info[matn_info['taraf_ID'] == taraf_num]['Book_Name'].to_list()
taraf_author = matn_info[matn_info['taraf_ID'] == taraf_num]['Author'].to_list()
taraf_hadith_number = matn_info[matn_info['taraf_ID'] == taraf_num]['Hadith Number'].to_list()
lst_hadith = []
for i in range(len(taraf_hadith_split)):
# This checks each hadith in the Taraf, is that book id hadith id found in each of the edges of isnad_info
#This loop get the end transmitter of each Hadith in the Taraf
isnad_in_hadith1 = isnad_info['Hadiths Cleaned'].apply(lambda x: taraf_hadith_split[i] in x )
isnad_hadith1 = isnad_info[isnad_in_hadith1][['Source', 'Destination']]
G = nx.from_pandas_edgelist(isnad_hadith1, source = 'Source', target = 'Destination', create_using = nx.DiGraph())
node = [int(n) for n, d in G.out_degree() if d == 0][0]
gen_node = narrator_bios[narrator_bios['Rawi ID']==node]['Generation'].iloc[0]
name_node = narrator_bios[narrator_bios['Rawi ID']==node]['Famous Name'].iloc[0]
lst_hadith.append([taraf_matns[i], gen_node, name_node, taraf_book[i], taraf_author[i], taraf_hadith_number[i]])
df = pd.DataFrame(lst_hadith, columns = ['Matn', 'Generation', 'Name', 'Book_Name', 'Author', 'Hadith Number'])
#hadith_cleaned = isnad_info['Hadiths Cleaned'].apply(lambda x: any(i in x for i in taraf_hadith_split) )
hadith_cleaned = isnad_info['Tarafs Cleaned'].apply(lambda x: taraf_num in x)
isnad_hadith = isnad_info[hadith_cleaned]
isnad_hadith['Teacher'] = isnad_hadith['Source'].apply(lambda x: narrator_bios[narrator_bios['Rawi ID'].astype(int) == int(x)]['Famous Name'].to_list())
isnad_hadith['Student'] = isnad_hadith['Destination'].apply(lambda x: narrator_bios[narrator_bios['Rawi ID'].astype(int) == int(x)]['Famous Name'].to_list())
isnad_hadith['Teacher'] = isnad_hadith['Teacher'].apply(lambda x: x[0] if len(x)==1 else 'ููุงู')
isnad_hadith['Student'] = isnad_hadith['Student'].apply(lambda x: x[0] if len(x)==1 else 'ููุงู')
net = Network(directed =True)
for _, row in isnad_hadith.iterrows():
source = row['Source']
target = row['Destination']
teacher_info = narrator_bios[narrator_bios['Rawi ID'] == int(row['Source'])]
student_info = narrator_bios[narrator_bios['Rawi ID'] == int(row['Destination'])]
teacher_narrations = teacher_info['Number of Narrations'].to_list()
if len(teacher_narrations):
teacher_narrations = teacher_narrations[0]
else:
teacher_narrations = row['Hadith Count']
student_narrations = student_info['Number of Narrations'].to_list()
if len(student_narrations):
student_narrations = student_narrations[0]
else:
student_narrations = row['Hadith Count']
teacher_gen = teacher_info['Generation'].to_list()
if len(teacher_gen):
teacher_gen = teacher_gen[0]
else:
teacher_gen = -1
student_gen = student_info['Generation'].to_list()
if len(student_gen):
student_gen = student_gen[0]
else:
student_gen = -1
teacher_rank = teacher_info["Narrator Rank"].to_list()
if len(teacher_rank):
teacher_rank = teacher_rank[0]
else:
teacher_rank = 'ููุงู'
student_rank = student_info["Narrator Rank"].to_list()
if len(student_rank):
student_rank = student_rank[0]
else:
student_rank = 'ููุงู'
if row['Source'] == '99999':
net.add_node(source, font = {'size':50, 'color': 'Black'}, color = '#000000', label = f'{row["Teacher"]}')
else:
net.add_node(source, font = {'size':30, 'color': 'red'}, color = value_to_hex(teacher_narrations), label = f'{row["Teacher"]} \n {teacher_rank} \n ID: {row["Source"]} - Gen {teacher_gen}')
net.add_node(target, font = {'size': 30, 'color': 'red'}, color = value_to_hex(student_narrations), label = f'{row["Student"]} \n{student_rank} \n ID: {row["Destination"]} - Gen {student_gen}')
net.add_edge(source, target, color = value_to_hex(int(row[f'{yaxis} Count'])), label = f"{row[f'{yaxis} Count']}")
net.barnes_hut(gravity=-5000, central_gravity=0.3, spring_length=200)
html = net.generate_html()
html = html.replace("'", "\"")
return f"""<iframe style="width: 100%; height: 600px;margin:0 auto" name="result" allow="midi; geolocation; microphone; camera;
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
allow-scripts allow-same-origin allow-popups
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>""" , df
def taraf_booknum(taraf_num):
taraf = matn_info[matn_info['taraf_ID'] == taraf_num]
return taraf[['matn', 'Book_ID', 'Hadith Number', 'Book_Name', 'Author']]
def visualize_subTaraf(df, yaxis):
df['bookid_hadithid'] = df['Book_ID'].astype(str) + '_' + df['Hadith Number'].astype(str)
hadith = matn_info[matn_info['bookid_hadithid'].isin(df['bookid_hadithid'])]
taraf_hadith_split = [i.split('_') for i in hadith['bookid_hadithid'].to_list()]
hadith_cleaned = isnad_info['Hadiths Cleaned'].apply(lambda x: any(i in x for i in taraf_hadith_split))
isnad_hadith = isnad_info[hadith_cleaned]
isnad_hadith['Teacher'] = isnad_hadith['Source'].apply(lambda x: narrator_bios[narrator_bios['Rawi ID'].astype(int) == int(x)]['Famous Name'].to_list())
isnad_hadith['Student'] = isnad_hadith['Destination'].apply(lambda x: narrator_bios[narrator_bios['Rawi ID'].astype(int) == int(x)]['Famous Name'].to_list())
isnad_hadith['Teacher'] = isnad_hadith['Teacher'].apply(lambda x: x[0] if len(x)==1 else 'ููุงู')
isnad_hadith['Student'] = isnad_hadith['Student'].apply(lambda x: x[0] if len(x)==1 else 'ููุงู')
net = Network(directed =True)
for _, row in isnad_hadith.iterrows():
source = row['Source']
target = row['Destination']
teacher_info = narrator_bios[narrator_bios['Rawi ID'] == int(row['Source'])]
student_info = narrator_bios[narrator_bios['Rawi ID'] == int(row['Destination'])]
teacher_narrations = teacher_info['Number of Narrations'].to_list()
if len(teacher_narrations):
teacher_narrations = teacher_narrations[0]
else:
teacher_narrations = row['Hadith Count']
student_narrations = student_info['Number of Narrations'].to_list()
if len(student_narrations):
student_narrations = student_narrations[0]
else:
student_narrations = row['Hadith Count']
teacher_gen = teacher_info['Generation'].to_list()
if len(teacher_gen):
teacher_gen = teacher_gen[0]
else:
teacher_gen = -1
student_gen = student_info['Generation'].to_list()
if len(student_gen):
student_gen = student_gen[0]
else:
student_gen = -1
teacher_rank = teacher_info["Narrator Rank"].to_list()
if len(teacher_rank):
teacher_rank = teacher_rank[0]
else:
teacher_rank = 'ููุงู'
student_rank = student_info["Narrator Rank"].to_list()
if len(student_rank):
student_rank = student_rank[0]
else:
student_rank = 'ููุงู'
if row['Source'] == '99999':
net.add_node(source, font = {'size':50, 'color': 'Black'}, color = '#000000', label = f'{row["Teacher"]}')
else:
net.add_node(source, font = {'size':30, 'color': 'red'}, color = value_to_hex(teacher_narrations), label = f'{row["Teacher"]} \n {teacher_rank} \n ID: {row["Source"]} - Gen {teacher_gen}')
net.add_node(target, font = {'size': 30, 'color': 'red'}, color = value_to_hex(student_narrations), label = f'{row["Student"]} \n{student_rank} \n ID: {row["Destination"]} - Gen {student_gen}')
net.add_edge(source, target, color = value_to_hex(int(row[f'{yaxis} Count'])), label = f"{row[f'{yaxis} Count']}")
net.barnes_hut(gravity=-5000, central_gravity=0.3, spring_length=200)
html = net.generate_html()
html = html.replace("'", "\"")
return f"""<iframe style="width: 100%; height: 600px;margin:0 auto" name="result" allow="midi; geolocation; microphone; camera;
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
allow-scripts allow-same-origin allow-popups
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>"""
with gr.Blocks() as demo:
with gr.Tab("Whole Taraf Visualizer"):
Yaxis = gr.Dropdown(choices = ['Taraf', 'Hadith', 'Isnad', 'Book'], value = 'Taraf', label = 'Variable to Display', info = 'Choose the variable to visualize.')
taraf_number = gr.Slider(1,taraf_max , value=10000, label="Taraf", info="Choose the Taraf to Input", step = 1)
btn = gr.Button('Submit')
btn.click(fn = visualize_isnad, inputs = [taraf_number, Yaxis], outputs = [gr.HTML(), gr.DataFrame(wrap=True)])
with gr.Tab("Book and Hadith Number Retriever"):
taraf_num = gr.Slider(1,taraf_max , value=10000, label="Taraf", info="Choose the Taraf to Input", step = 1)
btn_num = gr.Button('Retrieve')
btn_num.click(fn=taraf_booknum, inputs = [taraf_num], outputs= [gr.DataFrame(wrap=True)])
with gr.Tab('Select Hadith Isnad Visualizer'):
yyaxis = gr.Dropdown(choices = ['Taraf', 'Hadith', 'Isnad', 'Book'], value = 'Taraf', label = 'Variable to Display', info = 'Choose the variable to visualize.')
hadith_selection = gr.Dataframe(
headers=["Book_ID", "Hadith Number"],
datatype=["number", "number"],
row_count=5,
col_count=(2, "fixed"))
btn_hadith = gr.Button('Visualize')
btn_hadith.click(fn=visualize_subTaraf, inputs=[hadith_selection, yyaxis], outputs=[gr.HTML()])
demo.launch()
|