File size: 5,249 Bytes
c71a7d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e072981
448861d
c71a7d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8edff27
c71a7d8
cffe818
 
 
 
 
 
 
 
448861d
c71a7d8
 
d3d6de3
c71a7d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3d6de3
c71a7d8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import gradio as gr
from pyvis.network import Network
import networkx as nx
import numpy as np
import pandas as pd
import os
from datasets import load_dataset
from datasets import Features
from datasets import Value
from datasets import Dataset
import matplotlib.pyplot as plt

import re

pattern = r'"(.*?)"'
Secret_token = os.getenv('HF_token')

dataset = load_dataset('FDSRashid/hadith_info',data_files = 'Basic_Edge_Information.csv', token = Secret_token, split = 'train')

edge_info = dataset.to_pandas()

features = Features({'Rawi ID': Value('int32'), 'Famous Name': Value('string'), 'Narrator Rank': Value('string'), 'Number of Narrations': Value('string')})
narrator_bios = load_dataset("FDSRashid/hadith_info", data_files = 'Teacher_Bios.csv', token = Secret_token,features=features )
narrator_bios = narrator_bios['train'].to_pandas()
narrator_bios.loc[49845, 'Narrator Rank'] = 'ุฑุณูˆู„ ุงู„ู„ู‡'
narrator_bios.loc[49845, 'Number of Narrations'] = 0
narrator_bios['Number of Narrations'] = narrator_bios['Number of Narrations'].astype(int)
narrator_bios.loc[49845, 'Number of Narrations'] = 443471


features = Features({'matn': Value('string'), 'taraf_ID': Value('string'), 'bookid_hadithid': Value('string')})

dataset = load_dataset("FDSRashid/hadith_info", data_files = 'All_Matns.csv',token = Secret_token, features = features)
matn_info = dataset['train'].to_pandas()
matn_info = matn_info.drop(97550)
matn_info = matn_info.drop(307206)
matn_info['taraf_ID'] = matn_info['taraf_ID'].replace('KeyAbsent', -1)


matn_info['taraf_ID'] = matn_info['taraf_ID'].astype(int)


isnad_info = load_dataset('FDSRashid/hadith_info',token = Secret_token, data_files = 'isnad_info.csv', split = 'train').to_pandas()
isnad_info['Hadiths Cleaned'] = isnad_info['Hadiths'].apply(lambda x: [re.findall(pattern, string)[0].split("_") for string in x[1:-1].split(',')])

tarafs = np.max(matn_info['taraf_ID'].unique())

cmap = plt.colormaps['cool']
def value_to_hex(value):
    rgba_color = cmap(value)
    return "#{:02X}{:02X}{:02X}".format(int(rgba_color[0] * 255), int(rgba_color[1] * 255), int(rgba_color[2] * 255))

#edge_info, matn_info, narrator_bios, isnad_info

def visualize_isnad(taraf_num, yaxis):
  taraf_hadith = matn_info[matn_info['taraf_ID'] == taraf_num]['bookid_hadithid'].to_list()
  taraf_hadith_split = [i.split('_') for i in taraf_hadith]
  hadith_cleaned = isnad_info['Hadiths Cleaned'].apply(lambda x: any(i in x for i in taraf_hadith_split) )
  isnad_hadith = isnad_info[hadith_cleaned][['Source', 'Destination']]
  narrators = isnad_hadith.applymap(lambda x: narrator_bios[narrator_bios['Rawi ID'] == int(x)]['Famous Name'].to_list()).rename(columns={"Source": "Teacher", "Destination": "Student"})
  isnad_hadith["Student"] = narrators['Student']
  isnad_hadith["Teacher"] = narrators['Teacher']
  filtered = isnad_hadith[(isnad_hadith['Teacher'].apply(lambda x: len(x)) == 1) & (isnad_hadith['Student'].apply(lambda x: len(x)) == 1)]
  filtered['Student'] = filtered['Student'].apply(lambda x: x[0])
  filtered['Teacher'] = filtered['Teacher'].apply(lambda x: x[0])
  net = Network(directed =True)
  for _, row in filtered.iterrows():
    source = row['Teacher']
    target = row['Student']
    teacher_info = narrator_bios[narrator_bios['Rawi ID'] == int(row['Source'])]
    student_info = narrator_bios[narrator_bios['Rawi ID'] == int(row['Destination'])]
    isnad = isnad_info[(isnad_info['Source'] == row['Source']) & (isnad_info['Destination'] == row['Destination'])]
    teacher_narrations = teacher_info['Number of Narrations'].to_list()[0]
    student_narrations = student_info['Number of Narrations'].to_list()[0]
    if row['Source'] == '99999':
      net.add_node(source, font = {'size':50, 'color': 'Black'}, color = '#000000')
    else:
      net.add_node(source, font = {'size':30, 'color': 'red'}, color = value_to_hex(teacher_narrations), label = f'{source} \n {teacher_info["Narrator Rank"].to_list()[0]}')
    net.add_node(target, font = {'size': 30, 'color': 'red'}, color = value_to_hex(student_narrations), label = f'{target} \n{student_info["Narrator Rank"].to_list()[0]}')
    net.add_edge(source, target, color = value_to_hex(int(isnad['Hadith Count'].to_list()[0])), label = f"{isnad['Hadith Count'].to_list()[0]}")
  net.barnes_hut(gravity=-5000, central_gravity=0.3, spring_length=200)
  html = net.generate_html()
  html = html.replace("'", "\"")

    
  return f"""<iframe style="width: 100%; height: 600px;margin:0 auto" name="result" allow="midi; geolocation; microphone; camera; 
  display-capture; encrypted-media;" sandbox="allow-modals allow-forms 
  allow-scripts allow-same-origin allow-popups 
  allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" 
  allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>"""


with gr.Blocks() as demo:
  Yaxis = gr.Dropdown(choices = ['Tarafs', 'Hadiths', 'Isnads', 'Books'], value = 'Tarafs', label = 'Variable to Display', info = 'Choose the variable to visualize.')  
  taraf_number = gr.Slider(1,tarafs , value=10000, label="Taraf", info="Choose the Taraf to Input", step = 1)
  btn = gr.Button('Submit')
  btn.click(fn = visualize_isnad, inputs = [taraf_number, Yaxis], outputs = gr.HTML())
  demo.launch()