|
import gradio as gr |
|
from pyvis.network import Network |
|
import networkx as nx |
|
import numpy as np |
|
import pandas as pd |
|
import os |
|
from datasets import load_dataset |
|
from datasets import Features |
|
from datasets import Value |
|
from datasets import Dataset |
|
import matplotlib.pyplot as plt |
|
|
|
import re |
|
|
|
pattern = r'"(.*?)"' |
|
Secret_token = os.getenv('HF_token') |
|
|
|
dataset = load_dataset('FDSRashid/hadith_info',data_files = 'Basic_Edge_Information.csv', token = Secret_token, split = 'train') |
|
|
|
edge_info = dataset.to_pandas() |
|
|
|
features = Features({'Rawi ID': Value('int32'), 'Famous Name': Value('string'), 'Narrator Rank': Value('string'), 'Number of Narrations': Value('string'), 'Generation': Value('string')}) |
|
narrator_bios = load_dataset("FDSRashid/hadith_info", data_files = 'Teacher_Bios.csv', token = Secret_token,features=features ) |
|
narrator_bios = narrator_bios['train'].to_pandas() |
|
narrator_bios.loc[49845, 'Narrator Rank'] = 'ุฑุณูู ุงููู' |
|
narrator_bios.loc[49845, 'Number of Narrations'] = 0 |
|
narrator_bios['Number of Narrations'] = narrator_bios['Number of Narrations'].astype(int) |
|
narrator_bios.loc[49845, 'Number of Narrations'] = 443471 |
|
narrator_bios['Generation'] = narrator_bios['Generation'].replace([None], [-1]) |
|
narrator_bios['Generation'] = narrator_bios['Generation'].astype(int) |
|
|
|
|
|
features = Features({'matn': Value('string'), 'taraf_ID': Value('string'), 'bookid_hadithid': Value('string')}) |
|
|
|
dataset = load_dataset("FDSRashid/hadith_info", data_files = 'All_Matns.csv',token = Secret_token, features = features) |
|
matn_info = dataset['train'].to_pandas() |
|
matn_info = matn_info.drop(97550) |
|
matn_info = matn_info.drop(307206) |
|
matn_info['taraf_ID'] = matn_info['taraf_ID'].replace('KeyAbsent', -1) |
|
|
|
|
|
matn_info['taraf_ID'] = matn_info['taraf_ID'].astype(int) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
isnad_info = load_dataset('FDSRashid/hadith_info',token = Secret_token, data_files = 'isnad_info.csv', split = 'train').to_pandas() |
|
isnad_info['Hadiths Cleaned'] = isnad_info['Hadiths'].apply(lambda x: [re.findall(pattern, string)[0].split("_") for string in x[1:-1].split(',')]) |
|
|
|
taraf_max = np.max(matn_info['taraf_ID'].unique()) |
|
|
|
cmap = plt.colormaps['cool'] |
|
|
|
books = load_dataset('FDSRashid/Hadith_info', data_files='Books.csv', token = Secret_token)['train'].to_pandas() |
|
|
|
matn_info['Book'] = matn_info['bookid_hadithid'].apply(lambda x: books[books['Book_ID'] == int(x.split('_')[0])]['Book_Name'].to_list()[0]) |
|
matn_info['Author'] = matn_info['bookid_hadithid'].apply(lambda x: books[books['Book_ID'] == int(x.split('_')[0])]['Author'].to_list()[0]) |
|
matn_info['Hadith Number'] = matn_info['bookid_hadithid'].apply(lambda x: x.split('_')[1]) |
|
|
|
def value_to_hex(value): |
|
rgba_color = cmap(value) |
|
return "#{:02X}{:02X}{:02X}".format(int(rgba_color[0] * 255), int(rgba_color[1] * 255), int(rgba_color[2] * 255)) |
|
|
|
|
|
|
|
def visualize_isnad(taraf_num, yaxis): |
|
taraf_hadith = matn_info[matn_info['taraf_ID'] == taraf_num]['bookid_hadithid'].to_list() |
|
taraf_matns = matn_info[matn_info['taraf_ID'] == taraf_num]['matn'].to_list() |
|
taraf_hadith_split = [i.split('_') for i in taraf_hadith] |
|
taraf_book = matn_info[matn_info['taraf_ID'] == taraf_num]['Book'].to_list() |
|
taraf_author = matn_info[matn_info['taraf_ID'] == taraf_num]['Author'].to_list() |
|
taraf_hadith_number = taraf_book = matn_info[matn_info['taraf_ID'] == taraf_num]['Hadith Number'].to_list() |
|
lst_hadith = [] |
|
for i in range(len(taraf_hadith_split)): |
|
isnad_in_hadith1 = isnad_info['Hadiths Cleaned'].apply(lambda x: taraf_hadith_split[i] in x ) |
|
isnad_hadith1 = isnad_info[isnad_in_hadith1][['Source', 'Destination']] |
|
G = nx.from_pandas_edgelist(isnad_hadith1, source = 'Source', target = 'Destination', create_using = nx.DiGraph()) |
|
node = [int(n) for n, d in G.out_degree() if d == 0][0] |
|
gen_node = narrator_bios[narrator_bios['Rawi ID']==node]['Generation'].iloc[0] |
|
name_node = narrator_bios[narrator_bios['Rawi ID']==node]['Famous Name'].iloc[0] |
|
lst_hadith.append([taraf_matns[i], gen_node, name_node, taraf_book[i], taraf_author[i], taraf_hadith_number[i]]) |
|
df = pd.DataFrame(lst_hadith, columns = ['Matn', 'Generation', 'Name']) |
|
|
|
hadith_cleaned = isnad_info['Hadiths Cleaned'].apply(lambda x: any(i in x for i in taraf_hadith_split) ) |
|
isnad_hadith = isnad_info[hadith_cleaned][['Source', 'Destination']] |
|
narrators = isnad_hadith.applymap(lambda x: narrator_bios[narrator_bios['Rawi ID'] == int(x)]['Famous Name'].to_list()).rename(columns={"Source": "Teacher", "Destination": "Student"}) |
|
isnad_hadith["Student"] = narrators['Student'] |
|
isnad_hadith["Teacher"] = narrators['Teacher'] |
|
filtered = isnad_hadith[(isnad_hadith['Teacher'].apply(lambda x: len(x)) == 1) & (isnad_hadith['Student'].apply(lambda x: len(x)) == 1)] |
|
filtered['Student'] = filtered['Student'].apply(lambda x: x[0]) |
|
filtered['Teacher'] = filtered['Teacher'].apply(lambda x: x[0]) |
|
net = Network(directed =True) |
|
for _, row in filtered.iterrows(): |
|
source = row['Teacher'] |
|
target = row['Student'] |
|
teacher_info = narrator_bios[narrator_bios['Rawi ID'] == int(row['Source'])] |
|
student_info = narrator_bios[narrator_bios['Rawi ID'] == int(row['Destination'])] |
|
isnad = isnad_info[(isnad_info['Source'] == row['Source']) & (isnad_info['Destination'] == row['Destination'])] |
|
teacher_narrations = teacher_info['Number of Narrations'].to_list()[0] |
|
student_narrations = student_info['Number of Narrations'].to_list()[0] |
|
if row['Source'] == '99999': |
|
net.add_node(source, font = {'size':50, 'color': 'Black'}, color = '#000000') |
|
else: |
|
net.add_node(source, font = {'size':30, 'color': 'red'}, color = value_to_hex(teacher_narrations), label = f'{source} \n {teacher_info["Narrator Rank"].to_list()[0]}') |
|
net.add_node(target, font = {'size': 30, 'color': 'red'}, color = value_to_hex(student_narrations), label = f'{target} \n{student_info["Narrator Rank"].to_list()[0]}') |
|
net.add_edge(source, target, color = value_to_hex(int(isnad['Hadith Count'].to_list()[0])), label = f"{isnad['Hadith Count'].to_list()[0]}") |
|
net.barnes_hut(gravity=-5000, central_gravity=0.3, spring_length=200) |
|
html = net.generate_html() |
|
html = html.replace("'", "\"") |
|
return f"""<iframe style="width: 100%; height: 600px;margin:0 auto" name="result" allow="midi; geolocation; microphone; camera; |
|
display-capture; encrypted-media;" sandbox="allow-modals allow-forms |
|
allow-scripts allow-same-origin allow-popups |
|
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" |
|
allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>""" , df |
|
|
|
|
|
with gr.Blocks() as demo: |
|
Yaxis = gr.Dropdown(choices = ['Tarafs', 'Hadiths', 'Isnads', 'Books'], value = 'Tarafs', label = 'Variable to Display', info = 'Choose the variable to visualize.') |
|
taraf_number = gr.Slider(1,taraf_max , value=10000, label="Taraf", info="Choose the Taraf to Input", step = 1) |
|
btn = gr.Button('Submit') |
|
btn.click(fn = visualize_isnad, inputs = [taraf_number, Yaxis], outputs = [gr.HTML(), gr.DataFrame()]) |
|
demo.launch() |
|
|