Spaces:
Sleeping
Sleeping
import gradio as gr | |
from pyvis.network import Network | |
import networkx as nx | |
import numpy as np | |
import pandas as pd | |
import os | |
from datasets import load_dataset | |
from datasets import Features | |
from datasets import Value | |
from datasets import Dataset | |
import matplotlib.pyplot as plt | |
import re | |
pattern = r'"(.*?)"' | |
Secret_token = os.getenv('HF_token') | |
dataset = load_dataset('FDSRashid/hadith_info',data_files = 'Basic_Edge_Information.csv', token = Secret_token, split = 'train') | |
edge_info = dataset.to_pandas() | |
features = Features({'Rawi ID': Value('int32'), 'Famous Name': Value('string'), 'Narrator Rank': Value('string'), 'Number of Narrations': Value('string'), 'Generation': Value('string')}) | |
narrator_bios = load_dataset("FDSRashid/hadith_info", data_files = 'Teacher_Bios.csv', token = Secret_token,features=features ) | |
narrator_bios = narrator_bios['train'].to_pandas() | |
narrator_bios.loc[49845, 'Narrator Rank'] = 'ุฑุณูู ุงููู' | |
narrator_bios.loc[49845, 'Number of Narrations'] = 0 | |
narrator_bios['Number of Narrations'] = narrator_bios['Number of Narrations'].astype(int) | |
narrator_bios.loc[49845, 'Number of Narrations'] = 443471 | |
narrator_bios['Generation'] = narrator_bios['Generation'].replace([None], [-1]) | |
narrator_bios['Generation'] = narrator_bios['Generation'].astype(int) | |
features = Features({'matn': Value('string'), 'taraf_ID': Value('string'), 'bookid_hadithid': Value('string')}) | |
dataset = load_dataset("FDSRashid/hadith_info", data_files = 'All_Matns.csv',token = Secret_token, features = features) | |
matn_info = dataset['train'].to_pandas() | |
matn_info = matn_info.drop(97550) | |
matn_info = matn_info.drop(307206) | |
matn_info['taraf_ID'] = matn_info['taraf_ID'].replace('KeyAbsent', -1) | |
matn_info['taraf_ID'] = matn_info['taraf_ID'].astype(int) | |
# matn_info = matn_info.sort_values('taraf_ID') | |
# tarafs = matn_info['taraf_ID'].unique() | |
# for i, taraf in enumerate(tarafs): | |
# matn_info.loc[matn_info['taraf_ID'] == taraf, 'taraf_ID_New'] = i + 1 # Replace 'a' with 'e' in column 'C' where the condition is met | |
# matn_info['taraf_ID_New'] = matn_info['taraf_ID_New'].astype(int) | |
isnad_info = load_dataset('FDSRashid/hadith_info',token = Secret_token, data_files = 'isnad_info.csv', split = 'train').to_pandas() | |
isnad_info['Hadiths Cleaned'] = isnad_info['Hadiths'].apply(lambda x: [re.findall(pattern, string)[0].split("_") for string in x[1:-1].split(',')]) | |
taraf_max = np.max(matn_info['taraf_ID'].unique()) | |
cmap = plt.colormaps['cool'] | |
books = load_dataset('FDSRashid/Hadith_info', data_files='Books.csv', token = Secret_token)['train'].to_pandas() | |
matn_info['Book ID'] = matn_info['bookid_hadithid'].apply(lambda x: int(x.split('_')[0])) | |
matn_info['Hadith Number'] = matn_info['bookid_hadithid'].apply(lambda x: int(x.split('_')[1])) | |
matn_info = matn_info.join(books, on='Book ID') | |
def value_to_hex(value): | |
rgba_color = cmap(value) | |
return "#{:02X}{:02X}{:02X}".format(int(rgba_color[0] * 255), int(rgba_color[1] * 255), int(rgba_color[2] * 255)) | |
#edge_info, matn_info, narrator_bios, isnad_info | |
def visualize_isnad(taraf_num, yaxis): | |
taraf_hadith = matn_info[matn_info['taraf_ID'] == taraf_num]['bookid_hadithid'].to_list() | |
taraf_matns = matn_info[matn_info['taraf_ID'] == taraf_num]['matn'].to_list() | |
taraf_hadith_split = [i.split('_') for i in taraf_hadith] | |
taraf_book = matn_info[matn_info['taraf_ID'] == taraf_num]['Book'].to_list() | |
taraf_author = matn_info[matn_info['taraf_ID'] == taraf_num]['Author'].to_list() | |
taraf_hadith_number = taraf_book = matn_info[matn_info['taraf_ID'] == taraf_num]['Hadith Number'].to_list() | |
lst_hadith = [] | |
for i in range(len(taraf_hadith_split)): | |
isnad_in_hadith1 = isnad_info['Hadiths Cleaned'].apply(lambda x: taraf_hadith_split[i] in x ) | |
isnad_hadith1 = isnad_info[isnad_in_hadith1][['Source', 'Destination']] | |
G = nx.from_pandas_edgelist(isnad_hadith1, source = 'Source', target = 'Destination', create_using = nx.DiGraph()) | |
node = [int(n) for n, d in G.out_degree() if d == 0][0] | |
gen_node = narrator_bios[narrator_bios['Rawi ID']==node]['Generation'].iloc[0] | |
name_node = narrator_bios[narrator_bios['Rawi ID']==node]['Famous Name'].iloc[0] | |
lst_hadith.append([taraf_matns[i], gen_node, name_node, taraf_book[i], taraf_author[i], taraf_hadith_number[i]]) | |
df = pd.DataFrame(lst_hadith, columns = ['Matn', 'Generation', 'Name', 'Book', 'Author', 'Hadith Number']) | |
hadith_cleaned = isnad_info['Hadiths Cleaned'].apply(lambda x: any(i in x for i in taraf_hadith_split) ) | |
isnad_hadith = isnad_info[hadith_cleaned][['Source', 'Destination']] | |
narrators = isnad_hadith.applymap(lambda x: narrator_bios[narrator_bios['Rawi ID'] == int(x)]['Famous Name'].to_list()).rename(columns={"Source": "Teacher", "Destination": "Student"}) | |
isnad_hadith["Student"] = narrators['Student'] | |
isnad_hadith["Teacher"] = narrators['Teacher'] | |
filtered = isnad_hadith[(isnad_hadith['Teacher'].apply(lambda x: len(x)) == 1) & (isnad_hadith['Student'].apply(lambda x: len(x)) == 1)] | |
filtered['Student'] = filtered['Student'].apply(lambda x: x[0]) | |
filtered['Teacher'] = filtered['Teacher'].apply(lambda x: x[0]) | |
net = Network(directed =True) | |
for _, row in filtered.iterrows(): | |
source = row['Teacher'] | |
target = row['Student'] | |
teacher_info = narrator_bios[narrator_bios['Rawi ID'] == int(row['Source'])] | |
student_info = narrator_bios[narrator_bios['Rawi ID'] == int(row['Destination'])] | |
isnad = isnad_info[(isnad_info['Source'] == row['Source']) & (isnad_info['Destination'] == row['Destination'])] | |
teacher_narrations = teacher_info['Number of Narrations'].to_list()[0] | |
student_narrations = student_info['Number of Narrations'].to_list()[0] | |
if row['Source'] == '99999': | |
net.add_node(source, font = {'size':50, 'color': 'Black'}, color = '#000000') | |
else: | |
net.add_node(source, font = {'size':30, 'color': 'red'}, color = value_to_hex(teacher_narrations), label = f'{source} \n {teacher_info["Narrator Rank"].to_list()[0]}') | |
net.add_node(target, font = {'size': 30, 'color': 'red'}, color = value_to_hex(student_narrations), label = f'{target} \n{student_info["Narrator Rank"].to_list()[0]}') | |
net.add_edge(source, target, color = value_to_hex(int(isnad['Hadith Count'].to_list()[0])), label = f"{isnad['Hadith Count'].to_list()[0]}") | |
net.barnes_hut(gravity=-5000, central_gravity=0.3, spring_length=200) | |
html = net.generate_html() | |
html = html.replace("'", "\"") | |
return f"""<iframe style="width: 100%; height: 600px;margin:0 auto" name="result" allow="midi; geolocation; microphone; camera; | |
display-capture; encrypted-media;" sandbox="allow-modals allow-forms | |
allow-scripts allow-same-origin allow-popups | |
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" | |
allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>""" , df | |
with gr.Blocks() as demo: | |
Yaxis = gr.Dropdown(choices = ['Tarafs', 'Hadiths', 'Isnads', 'Books'], value = 'Tarafs', label = 'Variable to Display', info = 'Choose the variable to visualize.') | |
taraf_number = gr.Slider(1,taraf_max , value=10000, label="Taraf", info="Choose the Taraf to Input", step = 1) | |
btn = gr.Button('Submit') | |
btn.click(fn = visualize_isnad, inputs = [taraf_number, Yaxis], outputs = [gr.HTML(), gr.DataFrame()]) | |
demo.launch() | |