Spaces:
Sleeping
Sleeping
import gradio as gr | |
from pyvis.network import Network | |
import networkx as nx | |
import numpy as np | |
import pandas as pd | |
import os | |
from datasets import load_dataset | |
from datasets import Features | |
from datasets import Value | |
from datasets import Dataset | |
import matplotlib.pyplot as plt | |
import re | |
pattern = r'"(.*?)"' | |
# this pattern captures anything in a double quotes. | |
Secret_token = os.getenv('HF_token') | |
dataset = load_dataset('FDSRashid/hadith_info',data_files = 'Basic_Edge_Information.csv', token = Secret_token, split = 'train') | |
edge_info = dataset.to_pandas() | |
features = Features({'Rawi ID': Value('int32'), 'Famous Name': Value('string'), 'Narrator Rank': Value('string'), 'Number of Narrations': Value('string'), 'Generation': Value('string')}) | |
narrator_bios = load_dataset("FDSRashid/hadith_info", data_files = 'Teacher_Bios.csv', token = Secret_token,features=features ) | |
narrator_bios = narrator_bios['train'].to_pandas() | |
narrator_bios.loc[49845, 'Narrator Rank'] = 'ุฑุณูู ุงููู' | |
narrator_bios.loc[49845, 'Number of Narrations'] = 0 | |
narrator_bios['Number of Narrations'] = narrator_bios['Number of Narrations'].astype(int) | |
narrator_bios.loc[49845, 'Number of Narrations'] = 327512 | |
# 8125 Narrators have no Generation, listed in dataset as None | |
narrator_bios['Generation'] = narrator_bios['Generation'].replace([None], [-1]) | |
narrator_bios['Generation'] = narrator_bios['Generation'].astype(int) | |
features = Features({'matn': Value('string'), 'taraf_ID': Value('string'), 'bookid_hadithid': Value('string')}) | |
dataset = load_dataset("FDSRashid/hadith_info", data_files = 'All_Matns.csv',token = Secret_token, features = features) | |
matn_info = dataset['train'].to_pandas() | |
matn_info = matn_info.drop(97550) | |
matn_info = matn_info.drop(307206) | |
matn_info['taraf_ID'] = matn_info['taraf_ID'].replace('KeyAbsent', -1) | |
matn_info['taraf_ID'] = matn_info['taraf_ID'].astype(int) | |
# Isnad Info Hadiths column is structured like {"BookNum_HadithNum", ...} for each edge | |
isnad_info = load_dataset('FDSRashid/hadith_info',token = Secret_token, data_files = 'isnad_info.csv', split = 'train').to_pandas() | |
isnad_info['Hadiths Cleaned'] = isnad_info['Hadiths'].apply(lambda x: [re.findall(pattern, string)[0].split("_") for string in x[1:-1].split(',')]) | |
# Hadiths Cleaned is a list of lists, each sub-list is Book Id, Hadith ID | |
taraf_max = np.max(matn_info['taraf_ID'].unique()) | |
isnad_info['Tarafs Cleaned'] = isnad_info['Tarafs'].apply(lambda x: np.array([int(i.strip(' ')) for i in x[1:-1].split(',')])) | |
cmap = plt.colormaps['cool'] | |
books = load_dataset('FDSRashid/Hadith_info', data_files='Books.csv', token = Secret_token)['train'].to_pandas() | |
matn_info['Book_ID'] = matn_info['bookid_hadithid'].apply(lambda x: int(x.split('_')[0])) | |
matn_info['Hadith Number'] = matn_info['bookid_hadithid'].apply(lambda x: int(x.split('_')[1])) | |
matn_info = pd.merge(matn_info, books, on='Book_ID') | |
def value_to_hex(value): | |
rgba_color = cmap(value) | |
return "#{:02X}{:02X}{:02X}".format(int(rgba_color[0] * 255), int(rgba_color[1] * 255), int(rgba_color[2] * 255)) | |
#edge_info, matn_info, narrator_bios, isnad_info | |
def visualize_isnad(taraf_num, yaxis): | |
taraf_hadith = matn_info[matn_info['taraf_ID'] == taraf_num]['bookid_hadithid'].to_list() | |
taraf_matns = matn_info[matn_info['taraf_ID'] == taraf_num]['matn'].to_list() | |
taraf_hadith_split = [i.split('_') for i in taraf_hadith] | |
taraf_book = matn_info[matn_info['taraf_ID'] == taraf_num]['Book_Name'].to_list() | |
taraf_author = matn_info[matn_info['taraf_ID'] == taraf_num]['Author'].to_list() | |
taraf_hadith_number = matn_info[matn_info['taraf_ID'] == taraf_num]['Hadith Number'].to_list() | |
lst_hadith = [] | |
hadith_cleaned = isnad_info['Tarafs Cleaned'].apply(lambda x: taraf_num in x) | |
isnad_hadith = isnad_info[hadith_cleaned] | |
for i in range(len(taraf_hadith_split)): | |
# This checks each hadith in the Taraf, is that book id hadith id found in each of the edges of isnad_info | |
#This loop get the end transmitter of each Hadith in the Taraf | |
isnad_in_hadith1 = isnad_hadith['Hadiths Cleaned'].apply(lambda x: taraf_hadith_split[i] in x ) | |
isnad_hadith1 = isnad_hadith[isnad_in_hadith1][['Source', 'Destination']] | |
G = nx.from_pandas_edgelist(isnad_hadith1, source = 'Source', target = 'Destination', create_using = nx.DiGraph()) | |
node = [int(n) for n, d in G.out_degree() if d == 0] | |
for n in node: | |
gen_node = narrator_bios[narrator_bios['Rawi ID']==n]['Generation'].iloc[0] | |
name_node = narrator_bios[narrator_bios['Rawi ID']==n]['Famous Name'].iloc[0] | |
lst_hadith.append([taraf_matns[i], gen_node, name_node, taraf_book[i], taraf_author[i], taraf_hadith_number[i], str(n), str(i)]) | |
df = pd.DataFrame(lst_hadith, columns = ['Matn', 'Generation', 'Name', 'Book_Name', 'Author', 'Book Hadith Number', 'End Transmitter ID', 'Hadith Number']) | |
#hadith_cleaned = isnad_info['Hadiths Cleaned'].apply(lambda x: any(i in x for i in taraf_hadith_split) ) | |
isnad_hadith['Teacher'] = isnad_hadith['Source'].apply(lambda x: narrator_bios[narrator_bios['Rawi ID'].astype(int) == int(x)]['Famous Name'].to_list()) | |
isnad_hadith['Student'] = isnad_hadith['Destination'].apply(lambda x: narrator_bios[narrator_bios['Rawi ID'].astype(int) == int(x)]['Famous Name'].to_list()) | |
isnad_hadith['Teacher'] = isnad_hadith['Teacher'].apply(lambda x: x[0] if len(x)==1 else 'ููุงู') | |
isnad_hadith['Student'] = isnad_hadith['Student'].apply(lambda x: x[0] if len(x)==1 else 'ููุงู') | |
end_nodes = df['End Transmitter ID'].tolist() | |
G = nx.from_pandas_edgelist(isnad_hadith, source = 'Source', target = 'Destination', create_using = nx.DiGraph()) | |
isnad_pos = nx.nx_agraph.graphviz_layout(G, prog='dot') | |
x_stretch = 4 | |
y_stretch = 4 | |
net = Network(directed =True) | |
for node, pos in isnad_pos.items(): | |
node_info = narrator_bios[narrator_bios['Rawi ID'] == int(node)] | |
student_narrations = node_info['Number of Narrations'].to_list() | |
if len(student_narrations): | |
student_narrations = student_narrations[0] | |
else: | |
student_narrations = 1 | |
student_gen = node_info['Generation'].to_list() | |
if len(student_gen): | |
student_gen = student_gen[0] | |
else: | |
student_gen = -1 | |
student_rank = node_info["Narrator Rank"].to_list() | |
if len(student_rank): | |
student_rank = student_rank[0] | |
else: | |
student_rank = 'ููุงู' | |
node_name = node_info['Famous Name'].to_list() | |
if len(node_name): | |
node_name = node_name[0] | |
else: | |
node_name = 'ููุงู' | |
if node == '99999': | |
net.add_node(node, font = {'size':50, 'color': 'black'}, color = '#000000', label = f'{node_name} \n ID: {node} - Gen {student_gen}', x= pos[0]*x_stretch, y= -1*pos[1]*y_stretch, size= 70) | |
elif node in end_nodes: | |
end_matn_info = df[df["End Transmitter ID"] == source] | |
net.add_node(node, font = {'size':30, 'color': 'red'}, color = value_to_hex(student_narrations), label = f'{node_name} \n {student_rank} \n ID: {node} - Gen {student_gen} \n Hadith {" ".join(end_matn_info["Hadith Number"].tolist())}', x= pos[0]*x_stretch, y= -1*pos[1]*y_stretch, size= 50) | |
else: | |
net.add_node(node, font = {'size':30, 'color': 'red'}, color = value_to_hex(student_narrations), label = f'{node_name} \n {student_rank} \n ID: {node} - Gen {student_gen}', x= pos[0]*x_stretch, y= -1*pos[1]*y_stretch, size= 50) | |
for _, row in isnad_hadith.iterrows(): | |
source = row['Source'] | |
target = row['Destination'] | |
net.add_edge(source, target, color = value_to_hex(int(row[f'{yaxis} Count'])), label = f"{row[f'{yaxis} Count']}") | |
net.toggle_physics(False) | |
html = net.generate_html() | |
html = html.replace("'", "\"") | |
return f"""<iframe style="width: 100%; height: 600px;margin:0 auto" name="result" allow="midi; geolocation; microphone; camera; | |
display-capture; encrypted-media;" sandbox="allow-modals allow-forms | |
allow-scripts allow-same-origin allow-popups | |
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" | |
allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>""" , df | |
# for _, row in isnad_hadith.iterrows(): | |
# source = row['Source'] | |
# target = row['Destination'] | |
# teacher_info = narrator_bios[narrator_bios['Rawi ID'] == int(row['Source'])] | |
# student_info = narrator_bios[narrator_bios['Rawi ID'] == int(row['Destination'])] | |
# teacher_narrations = teacher_info['Number of Narrations'].to_list() | |
# if len(teacher_narrations): | |
# teacher_narrations = teacher_narrations[0] | |
# else: | |
# teacher_narrations = row['Hadith Count'] | |
# student_narrations = student_info['Number of Narrations'].to_list() | |
# if len(student_narrations): | |
# student_narrations = student_narrations[0] | |
# else: | |
# student_narrations = row['Hadith Count'] | |
# teacher_gen = teacher_info['Generation'].to_list() | |
# if len(teacher_gen): | |
# teacher_gen = teacher_gen[0] | |
# else: | |
# teacher_gen = -1 | |
# student_gen = student_info['Generation'].to_list() | |
# if len(student_gen): | |
# student_gen = student_gen[0] | |
# else: | |
# student_gen = -1 | |
# teacher_rank = teacher_info["Narrator Rank"].to_list() | |
# if len(teacher_rank): | |
# teacher_rank = teacher_rank[0] | |
# else: | |
# teacher_rank = 'ููุงู' | |
# student_rank = student_info["Narrator Rank"].to_list() | |
# if len(student_rank): | |
# student_rank = student_rank[0] | |
# else: | |
# student_rank = 'ููุงู' | |
# if row['Source'] == '99999': | |
# net.add_node(source, font = {'size':50, 'color': 'Black'}, color = '#000000', label = f'{row["Teacher"]}') | |
# elif source in end_nodes: | |
# end_matn_info = df[df["End Transmitter ID"] == source] | |
# net.add_node(source, font = {'size':30, 'color': 'red'}, color = value_to_hex(teacher_narrations), label = f'{row["Teacher"]} \n {teacher_rank} \n ID: {row["Source"]} - Gen {teacher_gen} \n Hadith {" ".join(end_matn_info["Hadith Number"].tolist())}') | |
# else: | |
# net.add_node(source, font = {'size':30, 'color': 'red'}, color = value_to_hex(teacher_narrations), label = f'{row["Teacher"]} \n {teacher_rank} \n ID: {row["Source"]} - Gen {teacher_gen}') | |
# if target in end_nodes: | |
# end_matn_info = df[df["End Transmitter ID"] == target] | |
# net.add_node(target, font = {'size': 30, 'color': 'red'}, color = value_to_hex(student_narrations), label = f'{row["Student"]} \n{student_rank} \n ID: {row["Destination"]} - Gen {student_gen} \n Hadith {" ".join(end_matn_info["Hadith Number"].tolist())}') | |
# else: | |
# net.add_node(target, font = {'size': 30, 'color': 'red'}, color = value_to_hex(student_narrations), label = f'{row["Student"]} \n{student_rank} \n ID: {row["Destination"]} - Gen {student_gen}') | |
# net.add_edge(source, target, color = value_to_hex(int(row[f'{yaxis} Count'])), label = f"{row[f'{yaxis} Count']}") | |
# net.barnes_hut(gravity=-5000, central_gravity=0.3, spring_length=200) | |
# html = net.generate_html() | |
# html = html.replace("'", "\"") | |
# return f"""<iframe style="width: 100%; height: 600px;margin:0 auto" name="result" allow="midi; geolocation; microphone; camera; | |
# display-capture; encrypted-media;" sandbox="allow-modals allow-forms | |
# allow-scripts allow-same-origin allow-popups | |
# allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" | |
# allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>""" , df | |
def taraf_booknum(taraf_num): | |
taraf = matn_info[matn_info['taraf_ID'] == taraf_num] | |
return taraf[['matn', 'Book_ID', 'Hadith Number', 'Book_Name', 'Author']] | |
def visualize_subTaraf(df, yaxis): | |
df['bookid_hadithid'] = df['Book_ID'].astype(str) + '_' + df['Hadith Number'].astype(str) | |
hadith = matn_info[matn_info['bookid_hadithid'].isin(df['bookid_hadithid'])] | |
taraf_hadith_split = [i.split('_') for i in hadith['bookid_hadithid'].to_list()] | |
hadith_cleaned = isnad_info['Hadiths Cleaned'].apply(lambda x: any(i in x for i in taraf_hadith_split)) | |
isnad_hadith = isnad_info[hadith_cleaned] | |
isnad_hadith['Teacher'] = isnad_hadith['Source'].apply(lambda x: narrator_bios[narrator_bios['Rawi ID'].astype(int) == int(x)]['Famous Name'].to_list()) | |
isnad_hadith['Student'] = isnad_hadith['Destination'].apply(lambda x: narrator_bios[narrator_bios['Rawi ID'].astype(int) == int(x)]['Famous Name'].to_list()) | |
isnad_hadith['Teacher'] = isnad_hadith['Teacher'].apply(lambda x: x[0] if len(x)==1 else 'ููุงู') | |
isnad_hadith['Student'] = isnad_hadith['Student'].apply(lambda x: x[0] if len(x)==1 else 'ููุงู') | |
net = Network(directed =True) | |
for _, row in isnad_hadith.iterrows(): | |
source = row['Source'] | |
target = row['Destination'] | |
teacher_info = narrator_bios[narrator_bios['Rawi ID'] == int(row['Source'])] | |
student_info = narrator_bios[narrator_bios['Rawi ID'] == int(row['Destination'])] | |
teacher_narrations = teacher_info['Number of Narrations'].to_list() | |
if len(teacher_narrations): | |
teacher_narrations = teacher_narrations[0] | |
else: | |
teacher_narrations = row['Hadith Count'] | |
student_narrations = student_info['Number of Narrations'].to_list() | |
if len(student_narrations): | |
student_narrations = student_narrations[0] | |
else: | |
student_narrations = row['Hadith Count'] | |
teacher_gen = teacher_info['Generation'].to_list() | |
if len(teacher_gen): | |
teacher_gen = teacher_gen[0] | |
else: | |
teacher_gen = -1 | |
student_gen = student_info['Generation'].to_list() | |
if len(student_gen): | |
student_gen = student_gen[0] | |
else: | |
student_gen = -1 | |
teacher_rank = teacher_info["Narrator Rank"].to_list() | |
if len(teacher_rank): | |
teacher_rank = teacher_rank[0] | |
else: | |
teacher_rank = 'ููุงู' | |
student_rank = student_info["Narrator Rank"].to_list() | |
if len(student_rank): | |
student_rank = student_rank[0] | |
else: | |
student_rank = 'ููุงู' | |
if row['Source'] == '99999': | |
net.add_node(source, font = {'size':50, 'color': 'Black'}, color = '#000000', label = f'{row["Teacher"]}') | |
else: | |
net.add_node(source, font = {'size':30, 'color': 'red'}, color = value_to_hex(teacher_narrations), label = f'{row["Teacher"]} \n {teacher_rank} \n ID: {row["Source"]} - Gen {teacher_gen}') | |
net.add_node(target, font = {'size': 30, 'color': 'red'}, color = value_to_hex(student_narrations), label = f'{row["Student"]} \n{student_rank} \n ID: {row["Destination"]} - Gen {student_gen}') | |
net.add_edge(source, target, color = value_to_hex(int(row[f'{yaxis} Count'])), label = f"{row[f'{yaxis} Count']}") | |
net.barnes_hut(gravity=-5000, central_gravity=0.3, spring_length=200) | |
html = net.generate_html() | |
html = html.replace("'", "\"") | |
return f"""<iframe style="width: 100%; height: 600px;margin:0 auto" name="result" allow="midi; geolocation; microphone; camera; | |
display-capture; encrypted-media;" sandbox="allow-modals allow-forms | |
allow-scripts allow-same-origin allow-popups | |
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" | |
allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>""" | |
with gr.Blocks() as demo: | |
with gr.Tab("Whole Taraf Visualizer"): | |
Yaxis = gr.Dropdown(choices = ['Taraf', 'Hadith', 'Isnad', 'Book'], value = 'Taraf', label = 'Variable to Display', info = 'Choose the variable to visualize.') | |
taraf_number = gr.Slider(1,taraf_max , value=10000, label="Taraf", info="Choose the Taraf to Input", step = 1) | |
btn = gr.Button('Submit') | |
btn.click(fn = visualize_isnad, inputs = [taraf_number, Yaxis], outputs = [gr.HTML(), gr.DataFrame(wrap=True)]) | |
with gr.Tab("Book and Hadith Number Retriever"): | |
taraf_num = gr.Slider(1,taraf_max , value=10000, label="Taraf", info="Choose the Taraf to Input", step = 1) | |
btn_num = gr.Button('Retrieve') | |
btn_num.click(fn=taraf_booknum, inputs = [taraf_num], outputs= [gr.DataFrame(wrap=True)]) | |
with gr.Tab('Select Hadith Isnad Visualizer'): | |
yyaxis = gr.Dropdown(choices = ['Taraf', 'Hadith', 'Isnad', 'Book'], value = 'Taraf', label = 'Variable to Display', info = 'Choose the variable to visualize.') | |
hadith_selection = gr.Dataframe( | |
headers=["Book_ID", "Hadith Number"], | |
datatype=["number", "number"], | |
row_count=5, | |
col_count=(2, "fixed")) | |
btn_hadith = gr.Button('Visualize') | |
btn_hadith.click(fn=visualize_subTaraf, inputs=[hadith_selection, yyaxis], outputs=[gr.HTML()]) | |
demo.launch() | |