Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -49,13 +49,12 @@ def find_most_similar_matn(text, n):
|
|
49 |
cos_sim = cosine_similarity(embed_text.reshape(1, -1), arr)
|
50 |
indices = np.argsort(cos_sim)[0][-n:]
|
51 |
matns = df.iloc[indices]
|
52 |
-
matns['
|
53 |
matns_prep = [araby.strip_diacritics(text) for text in matns['matn']]
|
54 |
to_compare = [(i, prep_text) for i in matns_prep]
|
55 |
is_taraf = model_CE.predict(to_compare)
|
56 |
-
matns['Cross Similarity'] = is_taraf
|
57 |
matns = matns[is_taraf> .5]
|
58 |
-
return matns[['Book_Name', 'matn', 'taraf_ID', 'Book_ID', 'Hadith Number', 'Author', '
|
59 |
|
60 |
with gr.Blocks() as demo:
|
61 |
text_input = gr.Textbox()
|
|
|
49 |
cos_sim = cosine_similarity(embed_text.reshape(1, -1), arr)
|
50 |
indices = np.argsort(cos_sim)[0][-n:]
|
51 |
matns = df.iloc[indices]
|
52 |
+
matns['Similarity'] = cos_sim[0][indices]
|
53 |
matns_prep = [araby.strip_diacritics(text) for text in matns['matn']]
|
54 |
to_compare = [(i, prep_text) for i in matns_prep]
|
55 |
is_taraf = model_CE.predict(to_compare)
|
|
|
56 |
matns = matns[is_taraf> .5]
|
57 |
+
return matns[['Book_Name', 'matn', 'taraf_ID', 'Book_ID', 'Hadith Number', 'Author', 'Similarity']]
|
58 |
|
59 |
with gr.Blocks() as demo:
|
60 |
text_input = gr.Textbox()
|