Spaces:
Sleeping
Sleeping
File size: 1,753 Bytes
5046606 3fcd866 5046606 a7b34d0 dcda834 ced084d dcda834 1891607 ffaaf4c 3fcd866 0d7cef9 3fcd866 7f9027d 3fcd866 83e1bac 50a580c 83e1bac 0d7cef9 e185680 83e1bac 0d7cef9 e185680 dcda834 54dac96 ffaaf4c 54dac96 ffaaf4c 0d7cef9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import numpy as np
import gradio as gr
import os
import pandas as pd
from datasets import load_dataset
Secret_token = os.getenv('token')
dataset = load_dataset('FDSRashid/hadith_info',data_files = 'Basic_Edge_Information.csv', token = Secret_token, split = 'train')
dataset2 = load_dataset('FDSRashid/hadith_info',data_files = 'Taraf_Info.csv', token = Secret_token, split = 'train')
edge_info = dataset.to_pandas()
taraf_info = dataset2.to_pandas()
cities = taraf_info['City'].unique().tolist()
min_year = int(taraf_info['Year'].min())
max_year = int(taraf_info['Year'].max())
def subset_city_year(city, year):
edges = taraf_info[(taraf_info['Year'] == year) & (taraf_info['City'].isin(city))]
return edges
def subset_year(year = 50):
edges = taraf_info[(taraf_info['Year'] == year)]
return edges
def splitIsnad(dataframe):
teacher_student =dataframe['Edge_Name'].str.split(' TO ')
dataframe['Teacher'] = teacher_student.apply(lambda x: x[0])
dataframe['Student'] = teacher_student.apply(lambda x: x[1])
return dataframe
def get_narrators( city , year):
try:
df = subset_city_year(city, year)
narrators = edge_info[edge_info['Edge_ID'].isin(df['ID'])]
fixed = narrators['Edge_Name'].reset_index()
return splitIsnad(fixed)
except Exception as e:
return str(e)
with gr.Blocks() as demo:
Places = gr.Dropdown(choices = cities, value = ['المدينه', 'بغداد', 'كوفة', 'بصرة'], multiselect=True, label = 'Location')
Last_Year = gr.Slider(min_year, max_year, value = 50, label = 'End', info = 'Choose the year to display Narrators')
btn = gr.Button('Submit')
btn.click(fn = get_narrators, inputs = [Places, Last_Year], outputs = gr.DataFrame())
demo.launch() |