|
import numpy as np |
|
import gradio as gr |
|
import os |
|
import pandas as pd |
|
from datasets import load_dataset |
|
|
|
Secret_token = os.getenv('token') |
|
|
|
dataset = load_dataset('FDSRashid/hadith_info',data_files = 'Basic_Edge_Information.csv', token = Secret_token, split = 'train') |
|
edge_info = dataset.to_pandas() |
|
|
|
def subset_city_year(year = 50, city = ['المدينه', 'بغداد', 'كوفة', 'بصرة']): |
|
edges = edge_info[(edge_info['Year'] == year) & (edge_info['City'].isin(city))] |
|
return edges |
|
|
|
|
|
|
|
def get_narrators(year = 50, city = ['المدينه', 'بغداد', 'كوفة', 'بصرة']): |
|
df = subset_city_year(year, city) |
|
narrators = edge_info[edge_info['Edge_ID'].isin(df['ID'])] |
|
return narrators['Edge_Name'].reset_index().drop('index', axis = 1).rename(columns = {'Edge_Name': 'Teacher To Student'}) |
|
|
|
app = gradio.Interface(get_narrators, |
|
[gradio.Dropdown(choices = cities, value = ['المدينه', 'بغداد', 'كوفة', 'بصرة'], multiselect=True), |
|
gradio.Slider(min_year, max_year, value = 0, label = 'Begining', info = 'Choose The Year to Retrieve Narrators'), |
|
], |
|
gr.Dataframe()).launch() |
|
|
|
|