Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,11 @@ import os
|
|
4 |
import pandas as pd
|
5 |
from datasets import load_dataset
|
6 |
|
|
|
|
|
|
|
|
|
|
|
7 |
Secret_token = os.getenv('token')
|
8 |
|
9 |
dataset = load_dataset('FDSRashid/hadith_info',data_files = 'Basic_Edge_Information.csv', token = Secret_token, split = 'train')
|
@@ -14,6 +19,16 @@ cities = taraf_info['City'].unique().tolist()
|
|
14 |
min_year = int(taraf_info['Year'].min())
|
15 |
max_year = int(taraf_info['Year'].max())
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
def subset_city_year(city, year1, year2):
|
18 |
edges = taraf_info[(taraf_info['Year'] >= year1) & (taraf_info['City'].isin(city)) & (taraf_info['Year'] <= year2)]
|
19 |
return edges
|
@@ -32,12 +47,14 @@ def splitIsnad(dataframe):
|
|
32 |
|
33 |
def get_narrators( city , year1, year2):
|
34 |
try:
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
39 |
except Exception as e:
|
40 |
-
|
41 |
|
42 |
|
43 |
|
|
|
4 |
import pandas as pd
|
5 |
from datasets import load_dataset
|
6 |
|
7 |
+
from datasets import load_dataset
|
8 |
+
from datasets import Features
|
9 |
+
from datasets import Value
|
10 |
+
from datasets import Dataset
|
11 |
+
|
12 |
Secret_token = os.getenv('token')
|
13 |
|
14 |
dataset = load_dataset('FDSRashid/hadith_info',data_files = 'Basic_Edge_Information.csv', token = Secret_token, split = 'train')
|
|
|
19 |
min_year = int(taraf_info['Year'].min())
|
20 |
max_year = int(taraf_info['Year'].max())
|
21 |
|
22 |
+
|
23 |
+
features = Features({'Rawi ID': Value('int32'), 'Famous Name': Value('string'), 'Narrator Rank': Value('string'), 'Number of Narrations': Value('string')})
|
24 |
+
narrator_bios = load_dataset("FDSRashid/hadith_info", data_files = 'Teacher_Bios.csv', token = HF_Token,features=features )
|
25 |
+
narrator_bios = narrator_bios['train'].to_pandas()
|
26 |
+
narrator_bios.loc[49845, 'Narrator Rank'] = 'رسول الله'
|
27 |
+
narrator_bios.loc[49845, 'Number of Narrations'] = 0
|
28 |
+
narrator_bios['Number of Narrations'] = narrator_bios['Number of Narrations'].astype(int)
|
29 |
+
narrator_bios.loc[49845, 'Number of Narrations'] = narrator_bios['Number of Narrations'].sum()
|
30 |
+
|
31 |
+
|
32 |
def subset_city_year(city, year1, year2):
|
33 |
edges = taraf_info[(taraf_info['Year'] >= year1) & (taraf_info['City'].isin(city)) & (taraf_info['Year'] <= year2)]
|
34 |
return edges
|
|
|
47 |
|
48 |
def get_narrators( city , year1, year2):
|
49 |
try:
|
50 |
+
df = subset_city_year(city, year1, year2)
|
51 |
+
narrators = edge_info[edge_info['Edge_ID'].isin(df['ID'])]
|
52 |
+
fixed = splitIsnad(narrators)
|
53 |
+
fixed['Teacher Reports'] = narrator_bios[narrator_bios['Rawi ID'] == fixed['Teacher_ID']]
|
54 |
+
fixed['Teacher Reports'] = narrator_bios[narrator_bios['Rawi ID'] == fixed['Teacher_ID']]
|
55 |
+
return fixed[['Teacher', 'Student', 'Teacher Reports', 'Student Reports']]
|
56 |
except Exception as e:
|
57 |
+
return str(e)
|
58 |
|
59 |
|
60 |
|