import numpy as np import gradio as gr import os import pandas as pd from datasets import load_dataset Secret_token = os.getenv('token') dataset = load_dataset('FDSRashid/hadith_info',data_files = 'Basic_Edge_Information.csv', token = Secret_token, split = 'train') dataset2 = load_dataset('FDSRashid/hadith_info',data_files = 'masteredgecityratiosapplied_updated_with_ID_mapping_to_NEO4J.csv', token = Secret_token, split = 'train') edge_info = dataset.to_pandas() taraf_info = dataset2.to_pandas() cities = taraf_info['City'].unique().tolist() min_year = int(taraf_info['Year'].min()) max_year = int(taraf_info['Year'].max()) def subset_city_year( city , year ): edges = taraf_info[(taraf_info['Year'] == year) & (taraf_info['City'].isin(city))] return edges def get_narrators( city , year ): try: df = subset_city_year(city, year) narrators = edge_info[edge_info['Edge_ID'].isin(df['ID'])] return narrators['Edge_Name'].reset_index().drop('index', axis = 1).rename(columns = {'Edge_Name': 'Teacher To Student'}) except Exception as e: return str(e) with gr.Blocks() as demo: Places = gr.Dropdown(choices = cities, value = ['المدينه', 'بغداد', 'كوفة', 'بصرة'], multiselect=True, label = 'Location') Last_Year = gr.Slider(min_year, max_year, value = 50, label = 'End', info = 'Choose the year to display Narrators') btn = gr.Button('Submit') btn.click(fn = get_narrators, inputs = [Places, Last_Year], outputs = gr.DataFrame()) demo.launch()