ChatVC / ChatTTS /core.py
Hilley's picture
Upload 13 files
38ae436 verified
import os
import logging
from omegaconf import OmegaConf
import torch
from vocos import Vocos
from .model.dvae import DVAE
from .model.gpt import GPT_warpper
from .utils.gpu_utils import select_device
from .utils.io_utils import get_latest_modified_file
from .infer.api import refine_text, infer_code
from huggingface_hub import snapshot_download
logging.basicConfig(level = logging.INFO)
class Chat:
def __init__(self, ):
self.pretrain_models = {}
self.logger = logging.getLogger(__name__)
def check_model(self, level = logging.INFO, use_decoder = False):
not_finish = False
check_list = ['vocos', 'gpt', 'tokenizer']
if use_decoder:
check_list.append('decoder')
else:
check_list.append('dvae')
for module in check_list:
if module not in self.pretrain_models:
self.logger.log(logging.WARNING, f'{module} not initialized.')
not_finish = True
if not not_finish:
self.logger.log(level, f'All initialized.')
return not not_finish
def load_models(self, source='huggingface', force_redownload=False, local_path='<LOCAL_PATH>'):
if source == 'huggingface':
hf_home = os.getenv('HF_HOME', os.path.expanduser("~/.cache/huggingface"))
try:
download_path = get_latest_modified_file(os.path.join(hf_home, 'hub/models--2Noise--ChatTTS/snapshots'))
except:
download_path = None
if download_path is None or force_redownload:
self.logger.log(logging.INFO, f'Download from HF: https://huggingface.co/2Noise/ChatTTS')
download_path = snapshot_download(repo_id="2Noise/ChatTTS", allow_patterns=["*.pt", "*.yaml"])
else:
self.logger.log(logging.INFO, f'Load from cache: {download_path}')
self._load(**{k: os.path.join(download_path, v) for k, v in OmegaConf.load(os.path.join(download_path, 'config', 'path.yaml')).items()})
elif source == 'local':
self.logger.log(logging.INFO, f'Load from local: {local_path}')
self._load(**{k: os.path.join(local_path, v) for k, v in OmegaConf.load(os.path.join(local_path, 'config', 'path.yaml')).items()})
def _load(
self,
vocos_config_path: str = None,
vocos_ckpt_path: str = None,
dvae_config_path: str = None,
dvae_ckpt_path: str = None,
gpt_config_path: str = None,
gpt_ckpt_path: str = None,
decoder_config_path: str = None,
decoder_ckpt_path: str = None,
tokenizer_path: str = None,
device: str = None
):
if not device:
device = select_device(4096)
self.logger.log(logging.INFO, f'use {device}')
if vocos_config_path:
vocos = Vocos.from_hparams(vocos_config_path).to(device).eval()
assert vocos_ckpt_path, 'vocos_ckpt_path should not be None'
vocos.load_state_dict(torch.load(vocos_ckpt_path))
self.pretrain_models['vocos'] = vocos
self.logger.log(logging.INFO, 'vocos loaded.')
if dvae_config_path:
cfg = OmegaConf.load(dvae_config_path)
dvae = DVAE(**cfg).to(device).eval()
assert dvae_ckpt_path, 'dvae_ckpt_path should not be None'
dvae.load_state_dict(torch.load(dvae_ckpt_path, map_location='cpu'))
self.pretrain_models['dvae'] = dvae
self.logger.log(logging.INFO, 'dvae loaded.')
if gpt_config_path:
cfg = OmegaConf.load(gpt_config_path)
gpt = GPT_warpper(**cfg).to(device).eval()
assert gpt_ckpt_path, 'gpt_ckpt_path should not be None'
gpt.load_state_dict(torch.load(gpt_ckpt_path, map_location='cpu'))
self.pretrain_models['gpt'] = gpt
self.logger.log(logging.INFO, 'gpt loaded.')
if decoder_config_path:
cfg = OmegaConf.load(decoder_config_path)
decoder = DVAE(**cfg).to(device).eval()
assert decoder_ckpt_path, 'decoder_ckpt_path should not be None'
decoder.load_state_dict(torch.load(decoder_ckpt_path, map_location='cpu'))
self.pretrain_models['decoder'] = decoder
self.logger.log(logging.INFO, 'decoder loaded.')
if tokenizer_path:
tokenizer = torch.load(tokenizer_path, map_location='cpu')
tokenizer.padding_side = 'left'
self.pretrain_models['tokenizer'] = tokenizer
self.logger.log(logging.INFO, 'tokenizer loaded.')
self.check_model()
def infer(
self,
text,
skip_refine_text=False,
refine_text_only=False,
params_refine_text={},
params_infer_code={},
use_decoder=False
):
assert self.check_model(use_decoder=use_decoder)
if not skip_refine_text:
text_tokens = refine_text(self.pretrain_models, text, **params_refine_text)['ids']
text_tokens = [i[i < self.pretrain_models['tokenizer'].convert_tokens_to_ids('[break_0]')] for i in text_tokens]
text = self.pretrain_models['tokenizer'].batch_decode(text_tokens)
if refine_text_only:
return text
text = [params_infer_code.get('prompt', '') + i for i in text]
params_infer_code.pop('prompt', '')
result = infer_code(self.pretrain_models, text, **params_infer_code, return_hidden=use_decoder)
if use_decoder:
mel_spec = [self.pretrain_models['decoder'](i[None].permute(0,2,1)) for i in result['hiddens']]
else:
mel_spec = [self.pretrain_models['dvae'](i[None].permute(0,2,1)) for i in result['ids']]
wav = [self.pretrain_models['vocos'].decode(i).cpu().numpy() for i in mel_spec]
return wav