import spaces import gradio as gr import numpy as np import os import random import json from PIL import Image import torch from torchvision import transforms import zipfile import cv2 # Added OpenCV import from diffusers import FluxFillPipeline, AutoencoderKL from PIL import Image # from samgeo.text_sam import LangSAM MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # sam = LangSAM(model_type="sam2-hiera-large").to(device) # Initialize vae model for 16-step encoding vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").to("cuda") pipe = FluxFillPipeline.from_pretrained("black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16).to("cuda") with open("lora_models.json", "r") as f: lora_models = json.load(f) def download_model(model_name, model_path): print(f"Downloading model: {model_name} from {model_path}") try: pipe.load_lora_weights(model_path) print(f"Successfully downloaded model: {model_name}") except Exception as e: print(f"Failed to download model: {model_name}. Error: {e}") # Iterate through the models and download each one for model_name, model_path in lora_models.items(): download_model(model_name, model_path) lora_models["None"] = None def calculate_optimal_dimensions(image: Image.Image): # Extract the original dimensions original_width, original_height = image.size # Set constants MIN_ASPECT_RATIO = 9 / 16 MAX_ASPECT_RATIO = 16 / 9 FIXED_DIMENSION = 1024 # Calculate the aspect ratio of the original image original_aspect_ratio = original_width / original_height # Determine which dimension to fix if original_aspect_ratio > 1: # Wider than tall width = FIXED_DIMENSION height = round(FIXED_DIMENSION / original_aspect_ratio) else: # Taller than wide height = FIXED_DIMENSION width = round(FIXED_DIMENSION * original_aspect_ratio) # Ensure dimensions are multiples of 8 width = (width // 8) * 8 height = (height // 8) * 8 # Enforce aspect ratio limits calculated_aspect_ratio = width / height if calculated_aspect_ratio > MAX_ASPECT_RATIO: width = (height * MAX_ASPECT_RATIO // 8) * 8 elif calculated_aspect_ratio < MIN_ASPECT_RATIO: height = (width / MIN_ASPECT_RATIO // 8) * 8 # Ensure width and height remain above the minimum dimensions width = max(width, 576) if width == FIXED_DIMENSION else width height = max(height, 576) if height == FIXED_DIMENSION else height return width, height def process_unmasked_area(image, mask, blur_strength=25): """ Process the unmasked portion of the image to remove context while preserving the masked area Args: image: PIL Image - the original input image mask: PIL Image - the mask with white (255) indicating the area to preserve blur_strength: int - strength of blur to apply to unmasked regions Returns: PIL Image with unmasked regions processed """ # Convert PIL images to numpy arrays for OpenCV processing img_np = np.array(image) mask_np = np.array(mask) # Ensure mask is binary (0 and 255) _, mask_binary = cv2.threshold(mask_np, 127, 255, cv2.THRESH_BINARY) # Create inverted mask (255 in areas we want to process) mask_inv = cv2.bitwise_not(mask_binary) # Apply strong blur to remove context in unmasked areas blurred = cv2.GaussianBlur(img_np, (blur_strength, blur_strength), 0) # Create the processed image # Keep original pixels where mask is white (255) # Use blurred pixels where mask is black (0) processed_np = np.where(mask_binary[:, :, None] == 255, img_np, blurred) # Convert back to PIL image processed_image = Image.fromarray(processed_np) return processed_image def vae_encode_16steps(image): """ Encode image using the VAE with 16 steps Args: image: PIL Image to encode Returns: Encoded latent representation """ # Convert PIL image to tensor transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize([0.5], [0.5]) ]) image_tensor = transform(image).unsqueeze(0).to("cuda") # Encode with 16 steps with torch.no_grad(): latent = vae.encode(image_tensor, num_inference_steps=16).latent_dist.sample() latent = latent * vae.config.scaling_factor return latent @spaces.GPU(durations=300) def infer(edit_images, prompt, lora_model, strength, seed=42, randomize_seed=False, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): # pipe.enable_xformers_memory_efficient_attention() gr.Info("Infering") if lora_model != "None": pipe.load_lora_weights(lora_models[lora_model]) pipe.enable_lora() gr.Info("starting checks") image = edit_images["background"] mask = edit_images["layers"][0] if not image: gr.Info("Please upload an image.") return None, None width, height = calculate_optimal_dimensions(image) if randomize_seed: seed = random.randint(0, MAX_SEED) # Process the unmasked portion to remove context processed_image = process_unmasked_area(image, mask) # Create latent encodings using VAE with 16 steps image_latent = vae_encode_16steps(processed_image) gr.Info("generating image") image = pipe( # Use the encoded image latent mask_image_latent=image_latent, prompt=prompt, prompt_2=prompt, image=processed_image, mask_image=mask, height=height, width=width, guidance_scale=guidance_scale, # strength=strength, num_inference_steps=num_inference_steps, generator=torch.Generator(device='cuda').manual_seed(seed), # generator=torch.Generator().manual_seed(seed), # lora_scale=0.75 // not supported in this version ).images[0] output_image_jpg = image.convert("RGB") output_image_jpg.save("output.jpg", "JPEG") return output_image_jpg, seed # return image, seed def download_image(image): if isinstance(image, np.ndarray): image = Image.fromarray(image) image.save("output.png", "PNG") return "output.png" def save_details(result, edit_image, prompt, lora_model, strength, seed, guidance_scale, num_inference_steps): image = edit_image["background"] mask = edit_image["layers"][0] if isinstance(result, np.ndarray): result = Image.fromarray(result) if isinstance(image, np.ndarray): image = Image.fromarray(image) if isinstance(mask, np.ndarray): mask = Image.fromarray(mask) result.save("saved_result.png", "PNG") image.save("saved_image.png", "PNG") mask.save("saved_mask.png", "PNG") details = { "prompt": prompt, "lora_model": lora_model, "strength": strength, "seed": seed, "guidance_scale": guidance_scale, "num_inference_steps": num_inference_steps } with open("details.json", "w") as f: json.dump(details, f) # Create a ZIP file with zipfile.ZipFile("output.zip", "w") as zipf: zipf.write("saved_result.png") zipf.write("saved_image.png") zipf.write("saved_mask.png") zipf.write("details.json") return "output.zip" def set_image_as_inpaint(image): return image # def generate_mask(image, click_x, click_y): # text_prompt = "face" # mask = sam.predict(image, text_prompt, box_threshold=0.24, text_threshold=0.24) # return mask examples = [ "photography of a young woman, accent lighting, (front view:1.4), " # "a tiny astronaut hatching from an egg on the moon", # "a cat holding a sign that says hello world", # "an anime illustration of a wiener schnitzel", ] css=""" #col-container { margin: 0 auto; max-width: 1000px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f"""# FLUX.1 [dev] """) with gr.Row(): with gr.Column(): edit_image = gr.ImageEditor( label='Upload and draw mask for inpainting', type='pil', sources=["upload", "webcam"], image_mode='RGB', layers=False, brush=gr.Brush(colors=["#FFFFFF"]), # height=600 ) prompt = gr.Text( label="Prompt", show_label=False, max_lines=2, placeholder="Enter your prompt", container=False, ) lora_model = gr.Dropdown( label="Select LoRA Model", choices=list(lora_models.keys()), value="None", ) run_button = gr.Button("Run") result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=1, maximum=30, step=0.5, value=50, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=28, ) with gr.Row(): strength = gr.Slider( label="Strength", minimum=0, maximum=1, step=0.01, value=0.85, ) # width = gr.Slider( # label="width", # minimum=512, # maximum=3072, # step=1, # value=1024, # ) # height = gr.Slider( # label="height", # minimum=512, # maximum=3072, # step=1, # value=1024, # ) gr.on( triggers=[run_button.click, prompt.submit], fn = infer, inputs = [edit_image, prompt, lora_model, strength, seed, randomize_seed, guidance_scale, num_inference_steps], outputs = [result, seed] ) download_button = gr.Button("Download Image as PNG") set_inpaint_button = gr.Button("Set Image as Inpaint") save_button = gr.Button("Save Details") download_button.click( fn=download_image, inputs=[result], outputs=gr.File(label="Download Image") ) set_inpaint_button.click( fn=set_image_as_inpaint, inputs=[result], outputs=[edit_image] ) save_button.click( fn=save_details, inputs=[result, edit_image, prompt, lora_model, strength, seed, guidance_scale, num_inference_steps], outputs=gr.File(label="Download/Save Status") ) # edit_image.select( # fn=generate_mask, # inputs=[edit_image, gr.Number(), gr.Number()], # outputs=[edit_image] # ) # demo.launch() PASSWORD = os.getenv("GRADIO_PASSWORD") USERNAME = os.getenv("GRADIO_USERNAME") # Create an authentication object def authenticate(username, password): if username == USERNAME and password == PASSWORD: return True else: return False # Launch the app with authentication demo.launch(debug=True, auth=authenticate)