File size: 5,634 Bytes
27c4f4a
 
 
 
 
 
 
 
 
2f2dad0
2e81dfe
 
27c4f4a
 
 
2f2dad0
fd8232b
 
 
2e81dfe
fd8232b
 
 
2f2dad0
 
 
 
 
2e81dfe
2f2dad0
27c4f4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e81dfe
27c4f4a
 
 
 
 
 
 
 
 
2e81dfe
27c4f4a
 
 
 
 
2e81dfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27c4f4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e81dfe
 
27c4f4a
 
 
2e81dfe
 
 
 
 
 
 
 
 
 
 
27c4f4a
 
2e81dfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27c4f4a
 
 
 
 
af58e15
27c4f4a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import gradio as gr
import torch
import soundfile as sf
import io
import librosa
import numpy as np
from pytube import YouTube
import os
import random
from huggingface_hub import HfApi
import pandas as pd
from moviepy.editor import *

FS=16000
MAX_SIZE = FS * 30

HF_TOKEN_DEMO=os.getenv("HF_TOKEN_DEMO")
MODEL_REPO=os.getenv("MODEL_REPO")
MODELNAME=os.getenv("MODELNAME")
MODELNAME2=os.getenv("MODELNAME2")
username=os.getenv("username")
password=os.getenv("password")

hf_api = HfApi(
    endpoint="https://huggingface.co", # Can be a Private Hub endpoint.
    token=HF_TOKEN_DEMO, # Token is not persisted on the machine.
)

modelfile = hf_api.hf_hub_download(MODEL_REPO,MODELNAME2)
MODEL = torch.jit.load(modelfile)


def reformat_freq(sr, y):
    if len(y.shape)==1 or y.shape[1]==1:
        pass
        #print("monocanal")
    else:
        # Avg two channels
        y=y.mean(axis=1)

    y = y.astype(np.float32)
    if sr not in (
        FS,
    ):
        y = librosa.resample(y, orig_sr=sr, target_sr=FS)

    return sr, y


def preprocess_audio(audio):
    _, y = reformat_freq(*audio)
    y = y[:MAX_SIZE]
    y=torch.as_tensor(y,dtype=torch.float32)
    y=torch.unsqueeze(y,0)

    return y

def postprocess_output(score):
    out=score.item()
    out = round(100*out,2)
    return "{:.2f}%".format(out)

def process_youtube_address(youtube_address):
    print("Downloading youtube audio from video...")
    
    try:
        selected_video = YouTube(youtube_address)
        audio=selected_video.streams.filter(only_audio=True, file_extension='mp4').first()
        nrand=round(random.random()*1000)
        audioname="audio-"+str(nrand)+".mp4a"
        audiowav="audio-"+str(nrand)+".wav"
        audiomp4a=audio.download('tmp',audioname)
        os.system("ffmpeg -i " + audiomp4a + " -ac 1 -ar {} ".format(FS) + audiowav + "; rm tmp/" + audioname )
    except Exception as inst:
        print("Exception: {}".format(inst))
        print("ERROR while downloading audio from " + youtube_address)
        audiowav=None
    return audiowav




def process_micro(micro):
    x=preprocess_audio(micro)
    output,_ = MODEL(x)
    print(output)
    result = postprocess_output(output)

    return result

def process_file(file):
    x,fs = librosa.load(file, sr=FS)
    x=preprocess_audio((fs,x))
    print("Running model")
    output,_ = MODEL(x)
    print(output)
    result = postprocess_output(output)

    return result

def process_files(files):

    resout=[]
    res2out=[]
    fnames=[]
    for f in files:
        file=f.name
        x,fs = librosa.load(file, sr=FS)
        x=preprocess_audio((fs,x))
        print("Running model")
        output,_ = MODEL(x)
        print(output)
        result, res2 = postprocess_output(output)
        resout.append(result)
        res2out.append(res2)


        fnames.append(os.path.basename(file))


    resout = pd.DataFrame({"File":fnames, "Probability of Real": resout})
    #return resout, res2out
    return resout

def process_video(file):
    video = VideoFileClip(file)
    audio = video.audio

    if not os.path.isdir('tmp'):
        os.makedirs('tmp')
    nrand=round(random.random()*1000)
    audiowav="tmp/audio-"+str(nrand)+".wav"
    audio.to_audiofile(audiowav)

    result = process_file(audiowav)
    os.remove(audiowav)

    return result

def process_youtube(youtube_address):
    audiofile=process_youtube_address(youtube_address)

    if audiofile is not None:
        result = process_file(audiofile)
        return result
    else: 
        return "Could not get audio from {}".format(youtube_address)






with gr.Blocks(title="Audio Fake Detector") as demo:
    with gr.Tab("Individual Processing"):
        gr.Markdown("# Welcome to Loccus.ai synthetic voice detection demo!")
    

    
        with gr.Row():
            with gr.Column():
                m = gr.Audio(source="microphone", type="numpy",label="Micro")
                f = gr.Audio(source="upload", type="filepath", label="Audio file")
                y = gr.Textbox(label="Enter YouTube address here")
                v = gr.Video(label="Enter a video", include_audio=True, scale=0.5)

            with gr.Column():
                with gr.Row(equal_height=True):
                
                    text = gr.Textbox(label="Probability of Real Voice")
        
        #file= gr.Audio(source="upload", type="filepath", optional=True)
        button_clear = gr.ClearButton([m,f,y,v,text])
        m.stop_recording(process_micro, inputs=[m], outputs=text)
        f.upload(process_file,inputs=[f], outputs=text)
        y.submit(process_youtube, inputs=[y], outputs=text)
        v.upload(process_video, inputs=[v], outputs=[text])

    with gr.Tab("Batch Processing"):
        gr.Markdown("# Welcome to Loccus.ai synthetic voice detection demo!")

        with gr.Row():
            with gr.Column():
                f = gr.File(file_types=["audio"], label="Audio file", file_count="multiple")


            with gr.Column():
                with gr.Row(equal_height=True):

                    textbatch = gr.Dataframe(
                        headers=["File", "Probability of Real"],
                        datatype=["str", "str"],
                    )
                
                    #text = gr.Textbox(label="Probability of Real Voice")
                    #text2 = gr.Textbox(label="Amp Mean Score")
            
        button_clear = gr.ClearButton([f,textbatch])
        
        f.upload(process_files,inputs=[f], outputs=[textbatch])



    #btn = gr.Button("Run")
    #btn.click(fn=update, inputs=inp, outputs=out)

demo.launch(auth=(username,password))