Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 7,822 Bytes
27c4f4a 2f2dad0 2e81dfe 7ca009e 27c4f4a 32a04df 7ca009e 2f2dad0 fd8232b b706e43 b9f2c18 1e6d615 0e21431 605235b 0e21431 1aafab2 0e21431 4623942 cef9c63 fd8232b b083733 2f2dad0 17dce5b 2f2dad0 27c4f4a 7ca009e 27c4f4a 7ca009e 27c4f4a 7ca009e 27c4f4a 7ca009e 27c4f4a 7ca009e 27c4f4a 7ca009e 27c4f4a 7ca009e 27c4f4a 7ca009e 2e81dfe 7ca009e 2e81dfe 7ca009e 2e81dfe 541ae6f 2e81dfe 27c4f4a 2e81dfe 7ca009e 32a04df 310211f 27c4f4a 2e81dfe 17dce5b 2e81dfe 7ca009e 2e81dfe 7ca009e 27c4f4a 17dce5b 7ca009e 17dce5b 2e81dfe 7ca009e 2e81dfe 7ca009e 2e81dfe b083733 27c4f4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
import gradio as gr
import torch
import soundfile as sf
import io
import librosa
import numpy as np
from pytube import YouTube
import os
import random
from huggingface_hub import HfApi
import pandas as pd
from moviepy.editor import *
import matplotlib.pyplot as plt
FS=16000
MAX_SIZE = FS * 180
CHUNK_SIZE = 4
N = CHUNK_SIZE * FS
HF_TOKEN_DEMO=os.getenv("HF_TOKEN_DEMO")
MODEL_REPO=os.getenv("MODEL_REPO")
MODELNAME=os.getenv("MODELNAME")
username=os.getenv("username")
password=os.getenv("password")
username0=os.getenv("username0")
password0=os.getenv("password0")
username9=os.getenv("username9")
password9=os.getenv("password9")
username12=os.getenv("username12")
password12=os.getenv("password12")
username17=os.getenv("username17")
password17=os.getenv("password17")
username18=os.getenv("username18")
password18=os.getenv("password18")
username20=os.getenv("username20")
password20=os.getenv("password20")
hf_api = HfApi(
endpoint="https://huggingface.co", # Can be a Private Hub endpoint.
token=HF_TOKEN_DEMO, # Token is not persisted on the machine.
)
modelfile = hf_api.hf_hub_download(MODEL_REPO,MODELNAME)
MODEL = torch.jit.load(modelfile)
def reformat_freq(sr, y):
if len(y.shape)==1 or y.shape[1]==1:
pass
#print("monocanal")
else:
# Avg two channels
y=y.mean(axis=1)
y = y.astype(np.float32)
if sr not in (
FS,
):
y = librosa.resample(y, orig_sr=sr, target_sr=FS)
return sr, y
def preprocess_audio(audio):
_, y = reformat_freq(*audio)
y = y[:MAX_SIZE]
y=torch.as_tensor(y,dtype=torch.float32)
y=torch.unsqueeze(y,0)
return y
def postprocess_output(score):
out=score.item()
out = round(100*out,2)
return "{:.2f}%".format(out)
def process_youtube_address(youtube_address):
print("Downloading youtube audio from video...")
try:
selected_video = YouTube(youtube_address)
audio=selected_video.streams.filter(only_audio=True, file_extension='mp4').first()
nrand=round(random.random()*1000)
audioname="audio-"+str(nrand)+".mp4a"
audiowav="audio-"+str(nrand)+".wav"
audiomp4a=audio.download('tmp',audioname)
os.system("ffmpeg -i " + audiomp4a + " -ac 1 -ar {} ".format(FS) + audiowav + "; rm tmp/" + audioname )
except Exception as inst:
print("Exception: {}".format(inst))
print("ERROR while downloading audio from " + youtube_address)
audiowav=None
return audiowav
def create_chunk_plot(x,ini, end, scores, lvec, scr):
x=x.squeeze()
T=x.size(0)
t = np.array(list(range(T))) / FS
result=[np.nan for _ in range(ini)]
for s,l in zip(scores.tolist(),lvec.tolist()):
resi=[100*s for _ in range(int(l))]
result.extend(resi)
reslast=[np.nan for _ in range(T-end)]
result.extend(reslast)
assert len(result)==T, f"Length result: {len(result)} - Length audio {T}"
assert len(t)==T, f"Length time: {len(result)} - Length audio {T}"
x=x-torch.min(x)
x=x/torch.max(x)*100
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(t, x, alpha=0.3)
ax.plot(t,result,color = 'tab:red')
ax.set_ylabel('Probability of Real')
ax.set_xlabel('Time (s)')
ax.set_title(f"Prob. of real audio = {scr}")
yticks=np.arange(11)*10
ax.set_yticks(yticks)
return fig
def process_micro(micro):
print("Micro processing")
x=preprocess_audio(micro)
print("Running model")
output, output_arr, lvec, ls, ts = MODEL(x)
print(output)
result = postprocess_output(output)
fig = create_chunk_plot(x, ls, ts, output_arr, lvec, result)
return fig
def process_file(file):
print("File processing")
x,fs = librosa.load(file, sr=FS)
x=preprocess_audio((fs,x))
print("Running model")
output, output_arr, lvec, ls, ts = MODEL(x)
print(output)
result = postprocess_output(output)
fig = create_chunk_plot(x, ls, ts, output_arr, lvec, result)
return fig
def process_files(files):
print("Batch processing")
resout=[]
fnames=[]
for f in files:
file=f.name
x,fs = librosa.load(file, sr=FS)
x=preprocess_audio((fs,x))
print("Running model")
output, _, _, _, _ = MODEL(x)
print(output)
result = postprocess_output(output)
resout.append(result)
fnames.append(os.path.basename(file))
resout = pd.DataFrame({"File":fnames, "Probability of Real": resout})
return resout
def process_video(file):
video = VideoFileClip(file)
audio = video.audio
if not os.path.isdir('tmp'):
os.makedirs('tmp')
nrand=round(random.random()*1000)
audiowav="tmp/audio-"+str(nrand)+".wav"
audio.to_audiofile(audiowav)
result = process_file(audiowav)
os.remove(audiowav)
return result
def process_youtube(youtube_address):
audiofile=process_youtube_address(youtube_address)
if audiofile is not None:
result = process_file(audiofile)
return result
else:
return "Could not get audio from {}".format(youtube_address)
with gr.Blocks(title="Audio Fake Detector") as demo:
with gr.Tab("Individual Processing"):
gr.Markdown("""# [Loccus.ai](http://www.loccus.ai) - AI Voice detection demo
This is a demo of our Authenticity Verification solution, aimed at detecting if a voice is real or not.
* Input - audio file in any format
* Output - probability of that voice being real or AI-generated (1.0 - Real / 0.0 AI-generated)
There are two testing modes:
* Individual processing - for single files. You will see a time-based view and scores for each 4-second chunk. Best for single long files.
* Batch processing - for a batch of files. You will see a single overall score per file. Best to assess multiple short files.
Only the first 3 minutes of audio are analyzed.""")
with gr.Row():
with gr.Column():
m = gr.Audio(source="microphone", type="numpy",label="Micro")
f = gr.Audio(source="upload", type="filepath", label="Audio file")
#y = gr.Textbox(label="Enter YouTube address here")
#v = gr.Video(label="Enter a video", include_audio=True, scale=0.5)
with gr.Column(scale=2):
with gr.Row(equal_height=True):
img = gr.Plot(show_label=False)
#file= gr.Audio(source="upload", type="filepath", optional=True)
#button_clear = gr.ClearButton([m,f,y,v,text])
button_clear = gr.ClearButton([m,f,img])
m.stop_recording(process_micro, inputs=[m], outputs=img)
f.upload(process_file,inputs=[f], outputs=img)
#y.submit(process_youtube, inputs=[y], outputs=text)
#v.upload(process_video, inputs=[v], outputs=[text])
with gr.Tab("Batch Processing"):
gr.Markdown("# [Loccus.ai](http://www.loccus.ai) - AI Voice detection demo")
with gr.Row():
with gr.Column():
f = gr.File(file_types=["audio"], label="Audio file", file_count="multiple")
with gr.Column():
with gr.Row(equal_height=True):
textbatch = gr.Dataframe(
headers=["File", "Probability of Real"],
datatype=["str", "str"],
)
button_clear = gr.ClearButton([f,textbatch])
f.upload(process_files,inputs=[f], outputs=[textbatch])
demo.launch(auth=[(username,password),(username0,password0) ,(username9,password9), (username12,password12),(username17,password17),(username18,password18),(username20,password20)])
|