DavidLoccus's picture
Loccus.ai is now part of Hiya!
21d6dc8
import gradio as gr
import torch
import soundfile as sf
import io
import librosa
import numpy as np
from pytube import YouTube
import os
import random
from huggingface_hub import HfApi
import pandas as pd
from moviepy.editor import *
import matplotlib.pyplot as plt
FS=16000
MAX_SIZE = FS * 180
CHUNK_SIZE = 4
N = CHUNK_SIZE * FS
HF_TOKEN_DEMO=os.getenv("HF_TOKEN_DEMO")
MODEL_REPO=os.getenv("MODEL_REPO")
MODELNAME=os.getenv("MODELNAME")
username=os.getenv("username")
password=os.getenv("password")
username0=os.getenv("username0")
password0=os.getenv("password0")
username9=os.getenv("username9")
password9=os.getenv("password9")
username12=os.getenv("username12")
password12=os.getenv("password12")
username17=os.getenv("username17")
password17=os.getenv("password17")
hf_api = HfApi(
endpoint="https://huggingface.co", # Can be a Private Hub endpoint.
token=HF_TOKEN_DEMO, # Token is not persisted on the machine.
)
modelfile = hf_api.hf_hub_download(MODEL_REPO,MODELNAME)
MODEL = torch.jit.load(modelfile)
def reformat_freq(sr, y):
if len(y.shape)==1 or y.shape[1]==1:
pass
#print("monocanal")
else:
# Avg two channels
y=y.mean(axis=1)
y = y.astype(np.float32)
if sr not in (
FS,
):
y = librosa.resample(y, orig_sr=sr, target_sr=FS)
return sr, y
def preprocess_audio(audio):
_, y = reformat_freq(*audio)
y = y[:MAX_SIZE]
y=torch.as_tensor(y,dtype=torch.float32)
y=torch.unsqueeze(y,0)
return y
def postprocess_output(score):
out=score.item()
out = round(100*out,2)
return "{:.2f}%".format(out)
def process_youtube_address(youtube_address):
print("Downloading youtube audio from video...")
try:
selected_video = YouTube(youtube_address)
audio=selected_video.streams.filter(only_audio=True, file_extension='mp4').first()
nrand=round(random.random()*1000)
audioname="audio-"+str(nrand)+".mp4a"
audiowav="audio-"+str(nrand)+".wav"
audiomp4a=audio.download('tmp',audioname)
os.system("ffmpeg -i " + audiomp4a + " -ac 1 -ar {} ".format(FS) + audiowav + "; rm tmp/" + audioname )
except Exception as inst:
print("Exception: {}".format(inst))
print("ERROR while downloading audio from " + youtube_address)
audiowav=None
return audiowav
def create_chunk_plot(x,ini, end, scores, lvec, scr):
x=x.squeeze()
T=x.size(0)
t = np.array(list(range(T))) / FS
result=[np.nan for _ in range(ini)]
for s,l in zip(scores.tolist(),lvec.tolist()):
resi=[100*s for _ in range(int(l))]
result.extend(resi)
reslast=[np.nan for _ in range(T-end)]
result.extend(reslast)
assert len(result)==T, f"Length result: {len(result)} - Length audio {T}"
assert len(t)==T, f"Length time: {len(result)} - Length audio {T}"
x=x-torch.min(x)
x=x/torch.max(x)*100
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(t, x, alpha=0.3)
ax.plot(t,result,color = 'tab:red')
ax.set_ylabel('Probability of Real')
ax.set_xlabel('Time (s)')
ax.set_title(f"Prob. of real audio = {scr}")
yticks=np.arange(11)*10
ax.set_yticks(yticks)
return fig
def process_micro(micro):
print("Micro processing")
x=preprocess_audio(micro)
print("Running model")
output, output_arr, lvec, ls, ts = MODEL(x)
print(output)
result = postprocess_output(output)
fig = create_chunk_plot(x, ls, ts, output_arr, lvec, result)
return fig
def process_file(file):
print("File processing")
x,fs = librosa.load(file, sr=FS)
x=preprocess_audio((fs,x))
print("Running model")
output, output_arr, lvec, ls, ts = MODEL(x)
print(output)
result = postprocess_output(output)
fig = create_chunk_plot(x, ls, ts, output_arr, lvec, result)
return fig
def process_files(files):
print("Batch processing")
resout=[]
fnames=[]
for f in files:
file=f.name
x,fs = librosa.load(file, sr=FS)
x=preprocess_audio((fs,x))
print("Running model")
output, _, _, _, _ = MODEL(x)
print(output)
result = postprocess_output(output)
resout.append(result)
fnames.append(os.path.basename(file))
resout = pd.DataFrame({"File":fnames, "Probability of Real": resout})
return resout
def process_video(file):
video = VideoFileClip(file)
audio = video.audio
if not os.path.isdir('tmp'):
os.makedirs('tmp')
nrand=round(random.random()*1000)
audiowav="tmp/audio-"+str(nrand)+".wav"
audio.to_audiofile(audiowav)
result = process_file(audiowav)
os.remove(audiowav)
return result
def process_youtube(youtube_address):
audiofile=process_youtube_address(youtube_address)
if audiofile is not None:
result = process_file(audiofile)
return result
else:
return "Could not get audio from {}".format(youtube_address)
with gr.Blocks(title="Audio Fake Detector") as demo:
with gr.Tab("Individual Processing"):
gr.Markdown("""# [Hiya](https://www.hiya.com/products/ai-voice) - AI Voice detection demo
This is a demo of our Authenticity Verification solution, aimed at detecting if a voice is real or not.
* Input - audio file in any format
* Output - probability of that voice being real or AI-generated (1.0 - Real / 0.0 AI-generated)
There are two testing modes:
* Individual processing - for single files. You will see a time-based view and scores for each 4-second chunk. Best for single long files.
* Batch processing - for a batch of files. You will see a single overall score per file. Best to assess multiple short files.
Only the first 3 minutes of audio are analyzed.""")
with gr.Row():
with gr.Column():
m = gr.Audio(sources=["microphone"], type="numpy",label="Micro")
f = gr.Audio(sources=["upload"], type="filepath", label="Audio file")
#y = gr.Textbox(label="Enter YouTube address here")
#v = gr.Video(label="Enter a video", include_audio=True, scale=0.5)
with gr.Column(scale=2):
with gr.Row(equal_height=True):
img = gr.Plot(show_label=False)
#file= gr.Audio(source="upload", type="filepath", optional=True)
#button_clear = gr.ClearButton([m,f,y,v,text])
button_clear = gr.ClearButton([m,f,img])
m.stop_recording(process_micro, inputs=[m], outputs=img)
f.upload(process_file,inputs=[f], outputs=img)
#y.submit(process_youtube, inputs=[y], outputs=text)
#v.upload(process_video, inputs=[v], outputs=[text])
with gr.Tab("Batch Processing"):
gr.Markdown("# [Hiya](https://www.hiya.com/products/ai-voice) - AI Voice detection demo")
with gr.Row():
with gr.Column():
f = gr.File(file_types=["audio"], label="Audio file", file_count="multiple")
with gr.Column():
with gr.Row(equal_height=True):
textbatch = gr.Dataframe(
headers=["File", "Probability of Real"],
datatype=["str", "str"],
)
button_clear = gr.ClearButton([f,textbatch])
f.upload(process_files,inputs=[f], outputs=[textbatch])
demo.launch(auth=[(username,password),(username0,password0) ,(username9,password9), (username12,password12),(username17,password17)])