Hjgugugjhuhjggg commited on
Commit
1e6f7d7
1 Parent(s): b327dbd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -6
app.py CHANGED
@@ -4,7 +4,7 @@ import os
4
  import torch
5
  from fastapi import FastAPI
6
  from langchain.llms import VLLM
7
- from gptcache import cache
8
  from sklearn.feature_extraction.text import TfidfVectorizer
9
  from sklearn.metrics.pairwise import cosine_similarity
10
  import nltk
@@ -27,10 +27,11 @@ model_2 = None
27
  model_3 = None
28
  model_4 = None
29
 
30
- cache_1 = cache.SimpleCache()
31
- cache_2 = cache.SimpleCache()
32
- cache_3 = cache.SimpleCache()
33
- cache_4 = cache.SimpleCache()
 
34
 
35
  previous_responses_1 = []
36
  previous_responses_2 = []
@@ -149,7 +150,7 @@ def create_langchain_model(model_name: str, device: torch.device, cache, previou
149
  prev_output = output_text.split()[-50:]
150
  output_chunks = split_output(output_text, MAX_TOKENS)
151
  best_response = get_best_response(output_chunks[0], previous_responses)
152
- cache.put(input_text, best_response)
153
  previous_responses.append(best_response)
154
  return best_response
155
  return generate_for_model
 
4
  import torch
5
  from fastapi import FastAPI
6
  from langchain.llms import VLLM
7
+ from cachetools import TTLCache
8
  from sklearn.feature_extraction.text import TfidfVectorizer
9
  from sklearn.metrics.pairwise import cosine_similarity
10
  import nltk
 
27
  model_3 = None
28
  model_4 = None
29
 
30
+ # Using TTLCache from cachetools
31
+ cache_1 = TTLCache(maxsize=100, ttl=600) # maxsize=100 and ttl=600 (10 minutes)
32
+ cache_2 = TTLCache(maxsize=100, ttl=600)
33
+ cache_3 = TTLCache(maxsize=100, ttl=600)
34
+ cache_4 = TTLCache(maxsize=100, ttl=600)
35
 
36
  previous_responses_1 = []
37
  previous_responses_2 = []
 
150
  prev_output = output_text.split()[-50:]
151
  output_chunks = split_output(output_text, MAX_TOKENS)
152
  best_response = get_best_response(output_chunks[0], previous_responses)
153
+ cache[input_text] = best_response
154
  previous_responses.append(best_response)
155
  return best_response
156
  return generate_for_model