Spaces:
Running
Running
File size: 12,757 Bytes
bc4a291 c01d9cd bc4a291 29af738 c01d9cd 6314551 8f67ba9 c01d9cd 6314551 c01d9cd 3d541b1 3cd1c43 3d541b1 6314551 bc4a291 6314551 c01d9cd 6314551 c01d9cd 6314551 c01d9cd 6314551 c01d9cd 6314551 c01d9cd 3d541b1 c01d9cd 29af738 107f317 6314551 c01d9cd 6314551 c01d9cd 3d541b1 6314551 c01d9cd 6314551 c01d9cd bc4a291 107f317 6314551 c01d9cd 107f317 6314551 c01d9cd 107f317 6314551 c01d9cd 5e1b647 c01d9cd 5e1b647 c01d9cd bc4a291 c01d9cd 6314551 c01d9cd bc4a291 29af738 bc4a291 6314551 bc4a291 29af738 bc4a291 6314551 bc4a291 6314551 bc4a291 6314551 bc4a291 6314551 bc4a291 6314551 bc4a291 6314551 bc4a291 6314551 bc4a291 107f317 bc4a291 6314551 bc4a291 6314551 bc4a291 6314551 bc4a291 f0c28bf bc4a291 c01d9cd bc4a291 c01d9cd bc4a291 6314551 bc4a291 c01d9cd 6314551 c01d9cd 6314551 c01d9cd e2b12e6 c01d9cd 29af738 bb37efc 29af738 5009dc7 29af738 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
import gradio as gr
import os
import datetime
import pytz
from pathlib import Path
def current_time():
current = datetime.datetime.now(pytz.timezone('Asia/Shanghai')).strftime("%Y年-%m月-%d日 %H时:%M分:%S秒")
return current
print(f"[{current_time()}] 开始部署空间...")
"""
print(f"[{current_time()}] 日志:安装 - 必要包")
os.system("pip install -r ./requirements.txt")
"""
print(f"[{current_time()}] 日志:安装 - gsutil")
os.system("pip install gsutil")
print(f"[{current_time()}] 日志:Git - 克隆 Github 的 T5X 训练框架到当前目录")
os.system("git clone --branch=main https://github.com/google-research/t5x")
print(f"[{current_time()}] 日志:文件 - 移动 t5x 到当前目录并重命名为 t5x_tmp 并删除")
os.system("mv t5x t5x_tmp; mv t5x_tmp/* .; rm -r t5x_tmp")
print(f"[{current_time()}] 日志:编辑 - 替换 setup.py 内的文本“jax[tpu]”为“jax”")
os.system("sed -i 's:jax\[tpu\]:jax:' setup.py")
print(f"[{current_time()}] 日志:Python - 使用 pip 安装 当前目录内的 Python 包")
os.system("python3 -m pip install -e .")
print(f"[{current_time()}] 日志:Python - 更新 Python 包管理器 pip")
os.system("python3 -m pip install --upgrade pip")
print(f"[{current_time()}] 日志:安装 - langchain")
os.system("pip install langchain")
print(f"[{current_time()}] 日志:安装 - sentence-transformers")
os.system("pip install sentence-transformers")
# 安装 airio
print(f"[{current_time()}] 日志:Git - 克隆 Github 的 airio 到当前目录")
os.system("git clone --branch=main https://github.com/google/airio")
print(f"[{current_time()}] 日志:文件 - 移动 airio 到当前目录并重命名为 airio_tmp 并删除")
os.system("mv airio airio_tmp; mv airio_tmp/* .; rm -r airio_tmp")
print(f"[{current_time()}] 日志:Python - 使用 pip 安装 当前目录内的 Python 包")
os.system("python3 -m pip install -e .")
# 安装 mt3
print(f"[{current_time()}] 日志:Git - 克隆 Github 的 MT3 模型到当前目录")
os.system("git clone --branch=main https://github.com/magenta/mt3")
print(f"[{current_time()}] 日志:文件 - 移动 mt3 到当前目录并重命名为 mt3_tmp 并删除")
os.system("mv mt3 mt3_tmp; mv mt3_tmp/* .; rm -r mt3_tmp")
print(f"[{current_time()}] 日志:Python - 使用 pip 从 storage.googleapis.com 安装 jax[cuda11_local] nest-asyncio pyfluidsynth")
os.system("python3 -m pip install jax[cuda11_local] nest-asyncio pyfluidsynth==1.3.0 -e . -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html")
print(f"[{current_time()}] 日志:Python - 使用 pip 安装 当前目录内的 Python 包")
os.system("python3 -m pip install -e .")
print(f"[{current_time()}] 日志:安装 - TensorFlow CPU")
os.system("pip install tensorflow_cpu")
# 复制检查点
print(f"[{current_time()}] 日志:gsutil - 复制 MT3 检查点到当前目录")
os.system("gsutil -q -m cp -r gs://mt3/checkpoints .")
# 复制 soundfont 文件(原始文件来自 https://sites.google.com/site/soundfonts4u)
print(f"[{current_time()}] 日志:gsutil - 复制 SoundFont 文件到当前目录")
os.system("gsutil -q -m cp gs://magentadata/soundfonts/SGM-v2.01-Sal-Guit-Bass-V1.3.sf2 .")
#@title 导入和定义
print(f"[{current_time()}] 日志:导入 - 必要工具")
import functools
import os
import numpy as np
import tensorflow.compat.v2 as tf
import functools
import gin
import jax
import librosa
import note_seq
import seqio
import t5
import t5x
from mt3 import metrics_utils
from mt3 import models
from mt3 import network
from mt3 import note_sequences
from mt3 import preprocessors
from mt3 import spectrograms
from mt3 import vocabularies
import nest_asyncio
nest_asyncio.apply()
SAMPLE_RATE = 16000
SF2_PATH = 'SGM-v2.01-Sal-Guit-Bass-V1.3.sf2'
def upload_audio(audio, sample_rate):
return note_seq.audio_io.wav_data_to_samples_librosa(
audio, sample_rate=sample_rate)
print(f"[{current_time()}] 日志:开始包装模型...")
class InferenceModel(object):
"""音乐转录的 T5X 模型包装器。"""
def __init__(self, checkpoint_path, model_type='mt3'):
# 模型常量。
if model_type == 'ismir2021':
num_velocity_bins = 127
self.encoding_spec = note_sequences.NoteEncodingSpec
self.inputs_length = 512
elif model_type == 'mt3':
num_velocity_bins = 1
self.encoding_spec = note_sequences.NoteEncodingWithTiesSpec
self.inputs_length = 256
else:
raise ValueError('unknown model_type: %s' % model_type)
gin_files = ['/home/user/app/mt3/gin/model.gin',
'/home/user/app/mt3/gin/mt3.gin']
self.batch_size = 8
self.outputs_length = 1024
self.sequence_length = {'inputs': self.inputs_length,
'targets': self.outputs_length}
self.partitioner = t5x.partitioning.PjitPartitioner(
model_parallel_submesh=None, num_partitions=1)
# 构建编解码器和词汇表。
print(f"[{current_time()}] 日志:构建编解码器")
self.spectrogram_config = spectrograms.SpectrogramConfig()
self.codec = vocabularies.build_codec(
vocab_config=vocabularies.VocabularyConfig(
num_velocity_bins=num_velocity_bins)
)
self.vocabulary = vocabularies.vocabulary_from_codec(self.codec)
self.output_features = {
'inputs': seqio.ContinuousFeature(dtype=tf.float32, rank=2),
'targets': seqio.Feature(vocabulary=self.vocabulary),
}
# 创建 T5X 模型。
print(f"[{current_time()}] 日志:创建 T5X 模型")
self._parse_gin(gin_files)
self.model = self._load_model()
# 从检查点中恢复。
print(f"[{current_time()}] 日志:恢复模型检查点")
self.restore_from_checkpoint(checkpoint_path)
@property
def input_shapes(self):
return {
'encoder_input_tokens': (self.batch_size, self.inputs_length),
'decoder_input_tokens': (self.batch_size, self.outputs_length)
}
def _parse_gin(self, gin_files):
"""解析用于训练模型的 gin 文件。"""
print(f"[{current_time()}] 日志:解析 gin 文件")
gin_bindings = [
'from __gin__ import dynamic_registration',
'from mt3 import vocabularies',
'[email protected]()',
'vocabularies.VocabularyConfig.num_velocity_bins=%NUM_VELOCITY_BINS'
]
with gin.unlock_config():
gin.parse_config_files_and_bindings(
gin_files, gin_bindings, finalize_config=False)
def _load_model(self):
"""在解析训练 gin 配置后加载 T5X `Model`。"""
print(f"[{current_time()}] 日志:加载 T5X 模型")
model_config = gin.get_configurable(network.T5Config)()
module = network.Transformer(config=model_config)
return models.ContinuousInputsEncoderDecoderModel(
module=module,
input_vocabulary=self.output_features['inputs'].vocabulary,
output_vocabulary=self.output_features['targets'].vocabulary,
optimizer_def=t5x.adafactor.Adafactor(decay_rate=0.8, step_offset=0),
input_depth=spectrograms.input_depth(self.spectrogram_config))
def restore_from_checkpoint(self, checkpoint_path):
"""从检查点中恢复训练状态,重置 self._predict_fn()。"""
print(f"[{current_time()}] 日志:从检查点恢复训练状态")
train_state_initializer = t5x.utils.TrainStateInitializer(
optimizer_def=self.model.optimizer_def,
init_fn=self.model.get_initial_variables,
input_shapes=self.input_shapes,
partitioner=self.partitioner)
restore_checkpoint_cfg = t5x.utils.RestoreCheckpointConfig(
path=checkpoint_path, mode='specific', dtype='float32')
train_state_axes = train_state_initializer.train_state_axes
self._predict_fn = self._get_predict_fn(train_state_axes)
self._train_state = train_state_initializer.from_checkpoint_or_scratch(
[restore_checkpoint_cfg], init_rng=jax.random.PRNGKey(0))
@functools.lru_cache()
def _get_predict_fn(self, train_state_axes):
"""生成一个分区的预测函数用于解码。"""
print(f"[{current_time()}] 日志:生成用于解码的预测函数")
def partial_predict_fn(params, batch, decode_rng):
return self.model.predict_batch_with_aux(
params, batch, decoder_params={'decode_rng': None})
return self.partitioner.partition(
partial_predict_fn,
in_axis_resources=(
train_state_axes.params,
t5x.partitioning.PartitionSpec('data',), None),
out_axis_resources=t5x.partitioning.PartitionSpec('data',)
)
def predict_tokens(self, batch, seed=0):
"""从预处理的数据集批次中预测 tokens。"""
print(f"[{current_time()}] 运行:从预处理数据集中预测音符序列")
prediction, _ = self._predict_fn(
self._train_state.params, batch, jax.random.PRNGKey(seed))
return self.vocabulary.decode_tf(prediction).numpy()
def __call__(self, audio):
"""从音频样本推断出音符序列。
参数:
audio:16kHz 的单个音频样本的 1 维 numpy 数组。
返回:
转录音频的音符序列。
"""
print(f"[{current_time()}] 运行:从音频样本中推断音符序列")
ds = self.audio_to_dataset(audio)
ds = self.preprocess(ds)
model_ds = self.model.FEATURE_CONVERTER_CLS(pack=False)(
ds, task_feature_lengths=self.sequence_length)
model_ds = model_ds.batch(self.batch_size)
inferences = (tokens for batch in model_ds.as_numpy_iterator()
for tokens in self.predict_tokens(batch))
predictions = []
for example, tokens in zip(ds.as_numpy_iterator(), inferences):
predictions.append(self.postprocess(tokens, example))
result = metrics_utils.event_predictions_to_ns(
predictions, codec=self.codec, encoding_spec=self.encoding_spec)
return result['est_ns']
def audio_to_dataset(self, audio):
"""从输入音频创建一个包含频谱图的 TF Dataset。"""
print(f"[{current_time()}] 运行:从音频创建包含频谱图的 TF Dataset")
frames, frame_times = self._audio_to_frames(audio)
return tf.data.Dataset.from_tensors({
'inputs': frames,
'input_times': frame_times,
})
def _audio_to_frames(self, audio):
"""从音频计算频谱图帧。"""
print(f"[{current_time()}] 运行:从音频计算频谱图帧")
frame_size = self.spectrogram_config.hop_width
padding = [0, frame_size - len(audio) % frame_size]
audio = np.pad(audio, padding, mode='constant')
frames = spectrograms.split_audio(audio, self.spectrogram_config)
num_frames = len(audio) // frame_size
times = np.arange(num_frames) / self.spectrogram_config.frames_per_second
return frames, times
def preprocess(self, ds):
pp_chain = [
functools.partial(
t5.data.preprocessors.split_tokens_to_inputs_length,
sequence_length=self.sequence_length,
output_features=self.output_features,
feature_key='inputs',
additional_feature_keys=['input_times']),
# 在训练期间进行缓存。
preprocessors.add_dummy_targets,
functools.partial(
preprocessors.compute_spectrograms,
spectrogram_config=self.spectrogram_config)
]
for pp in pp_chain:
ds = pp(ds)
return ds
def postprocess(self, tokens, example):
tokens = self._trim_eos(tokens)
start_time = example['input_times'][0]
# 向下取整到最接近的符号化时间步。
start_time -= start_time % (1 / self.codec.steps_per_second)
return {
'est_tokens': tokens,
'start_time': start_time,
# 内部 MT3 代码期望原始输入,这里不使用。
'raw_inputs': []
}
@staticmethod
def _trim_eos(tokens):
tokens = np.array(tokens, np.int32)
if vocabularies.DECODED_EOS_ID in tokens:
tokens = tokens[:np.argmax(tokens == vocabularies.DECODED_EOS_ID)]
return tokens
inference_model = InferenceModel('/home/user/app/checkpoints/mt3/', 'mt3')
def inference(audio):
filename = os.path.basename(audio) # 获取输入文件的文件名
print(f"[{current_time()}] 运行:输入文件: {filename}")
with open(audio, 'rb') as fd:
contents = fd.read()
audio = upload_audio(contents,sample_rate=16000)
est_ns = inference_model(audio)
note_seq.sequence_proto_to_midi_file(est_ns, './transcribed.mid')
return './transcribed.mid'
title = "MT3"
description = "MT3:多任务多音轨音乐转录的 Gradio 演示。要使用它,只需上传音频文件,或点击示例以查看效果。更多信息请参阅下面的链接。"
article = "<p style='text-align: center'>出错了?试试把文件转换为MP3后再上传吧~</p><p style='text-align: center'><a href='https://arxiv.org/abs/2111.03017' target='_blank'>MT3: 多任务多音轨音乐转录</a> | <a href='https://github.com/hmjz100/mt3' target='_blank'>Github 仓库</a></p>"
examples=[['canon.flac'], ['download.wav']]
gr.Interface(
inference,
gr.Audio(type="filepath", label="输入"),
outputs = gr.File(label="输出"),
title=title,
description=description,
article=article,
examples=examples
).launch() |