Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,14 +5,11 @@ import pytz
|
|
5 |
from pathlib import Path
|
6 |
|
7 |
def current_time():
|
8 |
-
|
9 |
-
|
10 |
|
11 |
print(f"[{current_time()}] 开始部署空间...")
|
12 |
-
|
13 |
-
print(f"[{current_time()}] 日志:安装 - 必要包")
|
14 |
-
os.system("pip install -r ./requirements.txt")
|
15 |
-
"""
|
16 |
print(f"[{current_time()}] 日志:安装 - gsutil")
|
17 |
os.system("pip install gsutil")
|
18 |
print(f"[{current_time()}] 日志:Git - 克隆 Github 的 T5X 训练框架到当前目录")
|
@@ -30,7 +27,6 @@ os.system("pip install langchain")
|
|
30 |
print(f"[{current_time()}] 日志:安装 - sentence-transformers")
|
31 |
os.system("pip install sentence-transformers")
|
32 |
|
33 |
-
# 安装 airio
|
34 |
print(f"[{current_time()}] 日志:Git - 克隆 Github 的 airio 到当前目录")
|
35 |
os.system("git clone --branch=main https://github.com/google/airio")
|
36 |
print(f"[{current_time()}] 日志:文件 - 移动 airio 到当前目录并重命名为 airio_tmp 并删除")
|
@@ -38,7 +34,6 @@ os.system("mv airio airio_tmp; mv airio_tmp/* .; rm -r airio_tmp")
|
|
38 |
print(f"[{current_time()}] 日志:Python - 使用 pip 安装 当前目录内的 Python 包")
|
39 |
os.system("python3 -m pip install -e .")
|
40 |
|
41 |
-
# 安装 mt3
|
42 |
print(f"[{current_time()}] 日志:Git - 克隆 Github 的 MT3 模型到当前目录")
|
43 |
os.system("git clone --branch=main https://github.com/magenta/mt3")
|
44 |
print(f"[{current_time()}] 日志:文件 - 移动 mt3 到当前目录并重命名为 mt3_tmp 并删除")
|
@@ -46,33 +41,28 @@ os.system("mv mt3 mt3_tmp; mv mt3_tmp/* .; rm -r mt3_tmp")
|
|
46 |
print(f"[{current_time()}] 日志:Python - 使用 pip 从 storage.googleapis.com 安装 jax[cuda11_local] nest-asyncio pyfluidsynth")
|
47 |
os.system("python3 -m pip install jax[cuda11_local] nest-asyncio pyfluidsynth==1.3.0 -e . -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html")
|
48 |
print(f"[{current_time()}] 日志:安装 - 更新 jaxlib")
|
49 |
-
os.system("pip install --upgrade jaxlib
|
50 |
print(f"[{current_time()}] 日志:Python - 使用 pip 安装 当前目录内的 Python 包")
|
51 |
os.system("python3 -m pip install -e .")
|
52 |
print(f"[{current_time()}] 日志:安装 - TensorFlow CPU")
|
53 |
os.system("pip install tensorflow_cpu")
|
54 |
|
55 |
-
# 复制检查点
|
56 |
print(f"[{current_time()}] 日志:gsutil - 复制 MT3 检查点到当前目录")
|
57 |
os.system("gsutil -q -m cp -r gs://mt3/checkpoints .")
|
58 |
|
59 |
-
# 复制 soundfont 文件(原始文件来自 https://sites.google.com/site/soundfonts4u)
|
60 |
print(f"[{current_time()}] 日志:gsutil - 复制 SoundFont 文件到当前目录")
|
61 |
os.system("gsutil -q -m cp gs://magentadata/soundfonts/SGM-v2.01-Sal-Guit-Bass-V1.3.sf2 .")
|
62 |
|
63 |
-
#@title 导入和定义
|
64 |
print(f"[{current_time()}] 日志:导入 - 必要工具")
|
65 |
import functools
|
66 |
import os
|
67 |
import numpy as np
|
68 |
import tensorflow.compat.v2 as tf
|
69 |
|
70 |
-
import functools
|
71 |
import gin
|
72 |
import jax
|
73 |
import librosa
|
74 |
import note_seq
|
75 |
-
|
76 |
import seqio
|
77 |
import t5
|
78 |
import t5x
|
@@ -92,230 +82,132 @@ SAMPLE_RATE = 16000
|
|
92 |
SF2_PATH = 'SGM-v2.01-Sal-Guit-Bass-V1.3.sf2'
|
93 |
|
94 |
def upload_audio(audio, sample_rate):
|
95 |
-
|
96 |
-
|
97 |
|
98 |
|
99 |
print(f"[{current_time()}] 日志:开始包装模型...")
|
100 |
class InferenceModel(object):
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
def __call__(self, audio):
|
223 |
-
"""从音频样本推断出音符序列。
|
224 |
-
|
225 |
-
参数:
|
226 |
-
audio:16kHz 的单个音频样本的 1 维 numpy 数组。
|
227 |
-
返回:
|
228 |
-
转录音频的音符序列。
|
229 |
-
"""
|
230 |
-
print(f"[{current_time()}] 运行:从音频样本中推断音符序列")
|
231 |
-
ds = self.audio_to_dataset(audio)
|
232 |
-
ds = self.preprocess(ds)
|
233 |
-
|
234 |
-
model_ds = self.model.FEATURE_CONVERTER_CLS(pack=False)(
|
235 |
-
ds, task_feature_lengths=self.sequence_length)
|
236 |
-
model_ds = model_ds.batch(self.batch_size)
|
237 |
-
|
238 |
-
inferences = (tokens for batch in model_ds.as_numpy_iterator()
|
239 |
-
for tokens in self.predict_tokens(batch))
|
240 |
-
|
241 |
-
predictions = []
|
242 |
-
for example, tokens in zip(ds.as_numpy_iterator(), inferences):
|
243 |
-
predictions.append(self.postprocess(tokens, example))
|
244 |
-
|
245 |
-
result = metrics_utils.event_predictions_to_ns(
|
246 |
-
predictions, codec=self.codec, encoding_spec=self.encoding_spec)
|
247 |
-
return result['est_ns']
|
248 |
-
|
249 |
-
def audio_to_dataset(self, audio):
|
250 |
-
"""从输入音频创建一个包含频谱图的 TF Dataset。"""
|
251 |
-
print(f"[{current_time()}] 运行:从音频创建包含频谱图的 TF Dataset")
|
252 |
-
frames, frame_times = self._audio_to_frames(audio)
|
253 |
-
return tf.data.Dataset.from_tensors({
|
254 |
-
'inputs': frames,
|
255 |
-
'input_times': frame_times,
|
256 |
-
})
|
257 |
-
|
258 |
-
def _audio_to_frames(self, audio):
|
259 |
-
"""从音频计算频谱图帧。"""
|
260 |
-
print(f"[{current_time()}] 运行:从音频计算频谱图帧")
|
261 |
-
frame_size = self.spectrogram_config.hop_width
|
262 |
-
padding = [0, frame_size - len(audio) % frame_size]
|
263 |
-
audio = np.pad(audio, padding, mode='constant')
|
264 |
-
frames = spectrograms.split_audio(audio, self.spectrogram_config)
|
265 |
-
num_frames = len(audio) // frame_size
|
266 |
-
times = np.arange(num_frames) / self.spectrogram_config.frames_per_second
|
267 |
-
return frames, times
|
268 |
-
|
269 |
-
def preprocess(self, ds):
|
270 |
-
pp_chain = [
|
271 |
-
functools.partial(
|
272 |
-
t5.data.preprocessors.split_tokens_to_inputs_length,
|
273 |
-
sequence_length=self.sequence_length,
|
274 |
-
output_features=self.output_features,
|
275 |
-
feature_key='inputs',
|
276 |
-
additional_feature_keys=['input_times']),
|
277 |
-
# 在训练期间进行缓存。
|
278 |
-
preprocessors.add_dummy_targets,
|
279 |
-
functools.partial(
|
280 |
-
preprocessors.compute_spectrograms,
|
281 |
-
spectrogram_config=self.spectrogram_config)
|
282 |
-
]
|
283 |
-
for pp in pp_chain:
|
284 |
-
ds = pp(ds)
|
285 |
-
return ds
|
286 |
-
|
287 |
-
def postprocess(self, tokens, example):
|
288 |
-
tokens = self._trim_eos(tokens)
|
289 |
-
start_time = example['input_times'][0]
|
290 |
-
# 向下取整到最接近的符号化时间步。
|
291 |
-
start_time -= start_time % (1 / self.codec.steps_per_second)
|
292 |
-
return {
|
293 |
-
'est_tokens': tokens,
|
294 |
-
'start_time': start_time,
|
295 |
-
# 内部 MT3 代码期望原始输入,这里不使用。
|
296 |
-
'raw_inputs': []
|
297 |
-
}
|
298 |
-
|
299 |
-
@staticmethod
|
300 |
-
def _trim_eos(tokens):
|
301 |
-
tokens = np.array(tokens, np.int32)
|
302 |
-
if vocabularies.DECODED_EOS_ID in tokens:
|
303 |
-
tokens = tokens[:np.argmax(tokens == vocabularies.DECODED_EOS_ID)]
|
304 |
-
return tokens
|
305 |
-
|
306 |
-
|
307 |
-
inference_model = InferenceModel('/home/user/app/checkpoints/mt3/', 'mt3')
|
308 |
-
|
309 |
-
|
310 |
-
def inference(audio):
|
311 |
-
filename = os.path.basename(audio) # 获取输入文件的文件名
|
312 |
-
print(f"[{current_time()}] 运行:输入文件: {filename}")
|
313 |
-
with open(audio, 'rb') as fd:
|
314 |
-
contents = fd.read()
|
315 |
-
audio = upload_audio(contents,sample_rate=16000)
|
316 |
-
est_ns = inference_model(audio)
|
317 |
-
note_seq.sequence_proto_to_midi_file(est_ns, './transcribed.mid')
|
318 |
-
return './transcribed.mid'
|
319 |
|
320 |
title = "MT3"
|
321 |
description = "MT3:多任务多音轨音乐转录的 Gradio 演示。要使用它,只需上传音频文件,或点击示例以查看效果。更多信息请参阅下面的链接。"
|
@@ -325,11 +217,11 @@ article = "<p style='text-align: center'>出错了?试试把文件转换为MP3
|
|
325 |
examples=[['canon.flac'], ['download.wav']]
|
326 |
|
327 |
gr.Interface(
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
|
|
5 |
from pathlib import Path
|
6 |
|
7 |
def current_time():
|
8 |
+
current = datetime.datetime.now(pytz.timezone('Asia/Shanghai')).strftime("%Y年-%m月-%d日 %H时:%M分:%S秒")
|
9 |
+
return current
|
10 |
|
11 |
print(f"[{current_time()}] 开始部署空间...")
|
12 |
+
|
|
|
|
|
|
|
13 |
print(f"[{current_time()}] 日志:安装 - gsutil")
|
14 |
os.system("pip install gsutil")
|
15 |
print(f"[{current_time()}] 日志:Git - 克隆 Github 的 T5X 训练框架到当前目录")
|
|
|
27 |
print(f"[{current_time()}] 日志:安装 - sentence-transformers")
|
28 |
os.system("pip install sentence-transformers")
|
29 |
|
|
|
30 |
print(f"[{current_time()}] 日志:Git - 克隆 Github 的 airio 到当前目录")
|
31 |
os.system("git clone --branch=main https://github.com/google/airio")
|
32 |
print(f"[{current_time()}] 日志:文件 - 移动 airio 到当前目录并重命名为 airio_tmp 并删除")
|
|
|
34 |
print(f"[{current_time()}] 日志:Python - 使用 pip 安装 当前目录内的 Python 包")
|
35 |
os.system("python3 -m pip install -e .")
|
36 |
|
|
|
37 |
print(f"[{current_time()}] 日志:Git - 克隆 Github 的 MT3 模型到当前目录")
|
38 |
os.system("git clone --branch=main https://github.com/magenta/mt3")
|
39 |
print(f"[{current_time()}] 日志:文件 - 移动 mt3 到当前目录并重命名为 mt3_tmp 并删除")
|
|
|
41 |
print(f"[{current_time()}] 日志:Python - 使用 pip 从 storage.googleapis.com 安装 jax[cuda11_local] nest-asyncio pyfluidsynth")
|
42 |
os.system("python3 -m pip install jax[cuda11_local] nest-asyncio pyfluidsynth==1.3.0 -e . -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html")
|
43 |
print(f"[{current_time()}] 日志:安装 - 更新 jaxlib")
|
44 |
+
os.system("pip install --upgrade jaxlib")
|
45 |
print(f"[{current_time()}] 日志:Python - 使用 pip 安装 当前目录内的 Python 包")
|
46 |
os.system("python3 -m pip install -e .")
|
47 |
print(f"[{current_time()}] 日志:安装 - TensorFlow CPU")
|
48 |
os.system("pip install tensorflow_cpu")
|
49 |
|
|
|
50 |
print(f"[{current_time()}] 日志:gsutil - 复制 MT3 检查点到当前目录")
|
51 |
os.system("gsutil -q -m cp -r gs://mt3/checkpoints .")
|
52 |
|
|
|
53 |
print(f"[{current_time()}] 日志:gsutil - 复制 SoundFont 文件到当前目录")
|
54 |
os.system("gsutil -q -m cp gs://magentadata/soundfonts/SGM-v2.01-Sal-Guit-Bass-V1.3.sf2 .")
|
55 |
|
|
|
56 |
print(f"[{current_time()}] 日志:导入 - 必要工具")
|
57 |
import functools
|
58 |
import os
|
59 |
import numpy as np
|
60 |
import tensorflow.compat.v2 as tf
|
61 |
|
|
|
62 |
import gin
|
63 |
import jax
|
64 |
import librosa
|
65 |
import note_seq
|
|
|
66 |
import seqio
|
67 |
import t5
|
68 |
import t5x
|
|
|
82 |
SF2_PATH = 'SGM-v2.01-Sal-Guit-Bass-V1.3.sf2'
|
83 |
|
84 |
def upload_audio(audio, sample_rate):
|
85 |
+
return note_seq.audio_io.wav_data_to_samples_librosa(
|
86 |
+
audio, sample_rate=sample_rate)
|
87 |
|
88 |
|
89 |
print(f"[{current_time()}] 日志:开始包装模型...")
|
90 |
class InferenceModel(object):
|
91 |
+
"""音乐转录的 T5X 模型包装器。"""
|
92 |
+
|
93 |
+
def __init__(self, checkpoint_path, model_type='mt3'):
|
94 |
+
if model_type == 'ismir2021':
|
95 |
+
num_velocity_bins = 127
|
96 |
+
self.encoding_spec = note_sequences.NoteEncodingSpec
|
97 |
+
self.inputs_length = 512
|
98 |
+
elif model_type == 'mt3':
|
99 |
+
num_velocity_bins = 1
|
100 |
+
self.encoding_spec = note_sequences.NoteEncodingWithTiesSpec
|
101 |
+
self.inputs_length = 256
|
102 |
+
else:
|
103 |
+
raise ValueError('unknown model_type: %s' % model_type)
|
104 |
+
|
105 |
+
gin_files = ['/home/user/app/mt3/gin/model.gin',
|
106 |
+
'/home/user/app/mt3/gin/mt3.gin']
|
107 |
+
|
108 |
+
self.batch_size = 8
|
109 |
+
self.outputs_length = 1024
|
110 |
+
self.sequence_length = {'inputs': self.inputs_length,
|
111 |
+
'targets': self.outputs_length}
|
112 |
+
|
113 |
+
self.partitioner = t5x.partitioning.PjitPartitioner(
|
114 |
+
model_parallel_submesh=None, num_partitions=1)
|
115 |
+
|
116 |
+
print(f"[{current_time()}] 日志:构建编解码器")
|
117 |
+
self.spectrogram_config = spectrograms.SpectrogramConfig()
|
118 |
+
self.codec = vocabularies.build_codec(
|
119 |
+
vocab_config=vocabularies.VocabularyConfig(
|
120 |
+
num_velocity_bins=num_velocity_bins)
|
121 |
+
)
|
122 |
+
self.vocabulary = vocabularies.vocabulary_from_codec(self.codec)
|
123 |
+
self.output_features = {
|
124 |
+
'inputs': seqio.ContinuousFeature(dtype=tf.float32, rank=2),
|
125 |
+
'targets': seqio.Feature(vocabulary=self.vocabulary),
|
126 |
+
}
|
127 |
+
|
128 |
+
print(f"[{current_time()}] 日志:创建 T5X 模型")
|
129 |
+
self._parse_gin(gin_files)
|
130 |
+
self.model = self._load_model()
|
131 |
+
|
132 |
+
print(f"[{current_time()}] 日志:恢复模型检查点")
|
133 |
+
self.restore_from_checkpoint(checkpoint_path)
|
134 |
+
|
135 |
+
@property
|
136 |
+
def input_shapes(self):
|
137 |
+
return {
|
138 |
+
'encoder_input_tokens': (self.batch_size, self.inputs_length),
|
139 |
+
'decoder_input_tokens': (self.batch_size, self.outputs_length)
|
140 |
+
}
|
141 |
+
|
142 |
+
def _parse_gin(self, gin_files):
|
143 |
+
print(f"[{current_time()}] 日志:解析 gin 文件")
|
144 |
+
gin_bindings = [
|
145 |
+
'from __gin__ import dynamic_registration',
|
146 |
+
'from mt3 import vocabularies',
|
147 |
+
'[email protected]()',
|
148 |
+
'vocabularies.VocabularyConfig.num_velocity_bins=%NUM_VELOCITY_BINS'
|
149 |
+
]
|
150 |
+
with gin.unlock_config():
|
151 |
+
gin.parse_config_files_and_bindings(
|
152 |
+
gin_files, gin_bindings, finalize_config=False)
|
153 |
+
|
154 |
+
def _load_model(self):
|
155 |
+
print(f"[{current_time()}] 日志:加载 T5X 模型")
|
156 |
+
model_config = gin.get_configurable(network.T5Config)()
|
157 |
+
module = network.Transformer(config=model_config)
|
158 |
+
return models.ContinuousInputsEncoderDecoderModel(
|
159 |
+
module=module,
|
160 |
+
input_vocabulary=self.output_features['inputs'].vocabulary,
|
161 |
+
output_vocabulary=self.output_features['targets'].vocabulary,
|
162 |
+
optimizer_def=t5x.adafactor.Adafactor(decay_rate=0.8, step_offset=0),
|
163 |
+
input_depth=spectrograms.input_depth(self.spectrogram_config))
|
164 |
+
|
165 |
+
|
166 |
+
def restore_from_checkpoint(self, checkpoint_path):
|
167 |
+
print(f"[{current_time()}] 日志:从检查点恢复训练状态")
|
168 |
+
train_state_initializer = t5x.utils.TrainStateInitializer(
|
169 |
+
optimizer_def=self.model.optimizer_def,
|
170 |
+
init_fn=self.model.get_initial_variables,
|
171 |
+
input_shapes=self.input_shapes,
|
172 |
+
partitioner=self.partitioner)
|
173 |
+
|
174 |
+
restore_checkpoint_cfg = t5x.utils.RestoreCheckpointConfig(
|
175 |
+
path=checkpoint_path, mode='specific', dtype='float32')
|
176 |
+
|
177 |
+
train_state_axes = train_state_initializer.train_state_axes
|
178 |
+
self._predict_fn = self._get_predict_fn(train_state_axes)
|
179 |
+
self._train_state = train_state_initializer.from_checkpoint_or_scratch(
|
180 |
+
[restore_checkpoint_cfg], init_rng=jax.random.PRNGKey(0))
|
181 |
+
|
182 |
+
@functools.lru_cache()
|
183 |
+
def _get_predict_fn(self, train_state_axes):
|
184 |
+
print(f"[{current_time()}] 日志:生成用于解码的预测函数")
|
185 |
+
def partial_predict_fn(params, batch, decode_rng):
|
186 |
+
return self.model.predict_batch_with_aux(
|
187 |
+
params, batch, decoder_params={'decode_rng': None})
|
188 |
+
return self.partitioner.partition(
|
189 |
+
partial_predict_fn,
|
190 |
+
in_axis_resources=(
|
191 |
+
train_state_axes.params,
|
192 |
+
t5x.partitioning.PartitionSpec('data',), None),
|
193 |
+
out_axis_resources=t5x.partitioning.PartitionSpec('data',)
|
194 |
+
)
|
195 |
+
|
196 |
+
def predict_tokens(self, batch, seed=0):
|
197 |
+
print(f"[{current_time()}] 运行:从预处理数据集中预测音符序列")
|
198 |
+
prediction, _ = self._predict_fn(
|
199 |
+
self._train_state.params, batch, jax.random.PRNGKey(seed))
|
200 |
+
return self.vocabulary.decode_tf(prediction).numpy()
|
201 |
+
|
202 |
+
def __call__(self, audio):
|
203 |
+
filename = os.path.basename(audio) # 获取输入文件的文件名
|
204 |
+
print(f"[{current_time()}] 运行:输入文件: {filename}")
|
205 |
+
with open(audio, 'rb') as fd:
|
206 |
+
contents = fd.read()
|
207 |
+
audio = upload_audio(contents,sample_rate=16000)
|
208 |
+
est_ns = inference_model(audio)
|
209 |
+
note_seq.sequence_proto_to_midi_file(est_ns, './transcribed.mid')
|
210 |
+
return './transcribed.mid'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
211 |
|
212 |
title = "MT3"
|
213 |
description = "MT3:多任务多音轨音乐转录的 Gradio 演示。要使用它,只需上传音频文件,或点击示例以查看效果。更多信息请参阅下面的链接。"
|
|
|
217 |
examples=[['canon.flac'], ['download.wav']]
|
218 |
|
219 |
gr.Interface(
|
220 |
+
inference,
|
221 |
+
gr.Audio(type="filepath", label="输入"),
|
222 |
+
outputs=gr.File(label="输出"),
|
223 |
+
title=title,
|
224 |
+
description=description,
|
225 |
+
article=article,
|
226 |
+
examples=examples
|
227 |
+
).launch(server_port=7861)
|