File size: 4,621 Bytes
d188b4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0518690
d188b4c
 
0518690
 
 
 
 
d188b4c
 
 
 
 
0518690
 
d188b4c
 
 
 
 
 
 
 
 
 
 
 
0518690
d188b4c
 
 
 
 
 
 
 
 
 
 
0518690
d188b4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0518690
d188b4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0518690
 
 
 
 
d188b4c
0518690
d188b4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
from flask import Flask, request, jsonify
import cv2
import numpy as np
from pathlib import Path
import tempfile
import os
import logging
from hloc import logger as hloc_logger
from common.api import ImageMatchingAPI
from common.utils import (
    DEVICE,
    get_matcher_zoo,
    load_config,
    ROOT,
)

app = Flask(__name__)

# Load configuration and matcher zoo
config = load_config(ROOT / "common/config.yaml")
matcher_zoo_restored = get_matcher_zoo(config["matcher_zoo"])

# Initialize API instances for each model
api_instances = {}
for model_name, conf in matcher_zoo_restored.items():
    api_instances[model_name] = ImageMatchingAPI(conf=conf, device=DEVICE)

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

def match_images(img_path1, img_path2, api_instance):
    logger.info(f"Matching images with {DEVICE} using provided API instance")
    try:
        # Read the images using OpenCV
        image0 = cv2.imread(img_path1)
        image1 = cv2.imread(img_path2)

        if image0 is None or image1 is None:
            raise ValueError("One or both images could not be read. Ensure the files are valid images.")

        # Convert BGR to RGB
        image0 = cv2.cvtColor(image0, cv2.COLOR_BGR2RGB)
        image1 = cv2.cvtColor(image1, cv2.COLOR_BGR2RGB)

        results = api_instance(image0, image1)

        return {
            "num_keypoints0": len(results["keypoints0_orig"]),
            "num_keypoints1": len(results["keypoints1_orig"]),
            "num_matches": len(results["mkeypoints0_orig"]),
            "num_inliers": len(results["mmkeypoints0_orig"]),
            "keypoints0": results["keypoints0_orig"].tolist(),
            "keypoints1": results["keypoints1_orig"].tolist(),
            "matches0": results["mkeypoints0_orig"].tolist(),
            "matches1": results["mmkeypoints0_orig"].tolist(),
            "inliers0": results["mmkeypoints0_orig"].tolist(),
            "inliers1": results["mmkeypoints0_orig"].tolist(),
            "confidence": results["mconf"].tolist(),
            "inlier_confidence": results["mmconf"].tolist(),
        }
    except Exception as e:
        logger.error("Matching failed: %s", str(e))
        return {"error": str(e)}
    finally:
        try:
            os.remove(img_path1)
            os.remove(img_path2)
        except Exception as cleanup_error:
            logger.error("Failed to clean up temporary files: %s", str(cleanup_error))

@app.route('/match-images', methods=['POST'])
def match_images_endpoint():
    if 'img1' not in request.files or 'img2' not in request.files:
        return jsonify({"error": "Please upload both images."}), 400

    img1_file = request.files['img1']
    img2_file = request.files['img2']
    model_name = request.form.get('model', 'superpoint+superglue')

    # Validate file types
    valid_extensions = {'png', 'jpg', 'jpeg', 'bmp', 'tiff'}
    if not (img1_file.filename.split('.')[-1].lower() in valid_extensions and
            img2_file.filename.split('.')[-1].lower() in valid_extensions):
        return jsonify({"error": "Invalid file type. Please upload images in one of the following formats: png, jpg, jpeg, bmp, tiff"}), 400

    try:
        # Save the uploaded files to a temporary directory with unique filenames
        temp_dir = tempfile.mkdtemp()
        img_path1 = os.path.join(temp_dir, next(tempfile._get_candidate_names()) + os.path.splitext(img1_file.filename)[1])
        img_path2 = os.path.join(temp_dir, next(tempfile._get_candidate_names()) + os.path.splitext(img2_file.filename)[1])
        img1_file.save(img_path1)
        img2_file.save(img_path2)

        # Get the pre-initialized API instance for the selected model
        api_instance = api_instances.get(model_name)
        if not api_instance:
            raise ValueError(f"Model '{model_name}' not found in matcher zoo.")

        # Run the matching task synchronously
        result = match_images(img_path1, img_path2, api_instance)
    except Exception as e:
        logger.error("Error processing images: %s", str(e))
        return jsonify({"error": str(e)}), 500
    finally:
        # Clean up the temporary directory
        if os.path.exists(temp_dir):
            try:
                os.rmdir(temp_dir)
            except Exception as cleanup_error:
                logger.error("Failed to clean up temporary directory: %s", str(cleanup_error))

    return jsonify(result), 200

if __name__ == '__main__':
    app.run(debug=True)