File size: 11,608 Bytes
3f71eec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import gradio as gr
import torch
import numpy as np
from PIL import Image
import torchvision.transforms as transforms
import pandas as pd
import os
import matplotlib.pyplot as plt
import seaborn as sns
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torch.optim.lr_scheduler import ReduceLROnPlateau
import numpy as np
import pandas as pd
from PIL import Image
import os
import torchvision.transforms as transforms
from sklearn.model_selection import train_test_split

class ClimateNet(nn.Module):
    def __init__(self, input_size=(256, 256), output_size=(64, 64)):
        super(ClimateNet, self).__init__()
        self.input_size = input_size
        self.output_size = output_size

        # Feature map sizes after two max pooling layers
        self.feature_size = (input_size[0] // 4, input_size[1] // 4)

        # Improved RGB Encoder with residual connections
        self.rgb_encoder = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=3, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.Conv2d(64, 64, kernel_size=3, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.MaxPool2d(2),
            nn.Dropout2d(0.2),

            nn.Conv2d(64, 128, kernel_size=3, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(),
            nn.Conv2d(128, 128, kernel_size=3, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(),
            nn.MaxPool2d(2),
            nn.Dropout2d(0.2)
        )

        # Improved NDVI Encoder
        self.ndvi_encoder = nn.Sequential(
            nn.Conv2d(1, 64, kernel_size=3, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.Conv2d(64, 64, kernel_size=3, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.MaxPool2d(2),
            nn.Dropout2d(0.2),

            nn.Conv2d(64, 128, kernel_size=3, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(),
            nn.MaxPool2d(2),
            nn.Dropout2d(0.2)
        )

        # Improved Terrain Encoder
        self.terrain_encoder = nn.Sequential(
            nn.Conv2d(1, 64, kernel_size=3, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.Conv2d(64, 64, kernel_size=3, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.MaxPool2d(2),
            nn.Dropout2d(0.2),

            nn.Conv2d(64, 128, kernel_size=3, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(),
            nn.MaxPool2d(2),
            nn.Dropout2d(0.2)
        )

        # Improved Weather Encoder with deeper architecture
        self.weather_encoder = nn.Sequential(
            nn.Linear(4, 64),
            nn.ReLU(),
            nn.Dropout(0.2),
            nn.Linear(64, 128),
            nn.ReLU(),
            nn.Dropout(0.2),
            nn.Linear(128, 128)
        )

        # Improved Feature Fusion
        self.fusion = nn.Sequential(
            nn.Conv2d(512, 512, kernel_size=1),
            nn.BatchNorm2d(512),
            nn.ReLU(),
            nn.Dropout2d(0.2),
            nn.Conv2d(512, 512, kernel_size=1),
            nn.BatchNorm2d(512),
            nn.ReLU()
        )

        # Improved Decoders with skip connections
        self.wind_decoder = nn.Sequential(
            nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(),
            nn.Dropout2d(0.2),
            nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(),
            nn.Dropout2d(0.2),
            nn.Conv2d(128, 64, kernel_size=3, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.Conv2d(64, 1, kernel_size=1),
            nn.Sigmoid()
        )

        self.solar_decoder = nn.Sequential(
            nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(),
            nn.Dropout2d(0.2),
            nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(),
            nn.Dropout2d(0.2),
            nn.Conv2d(128, 64, kernel_size=3, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.Conv2d(64, 1, kernel_size=1),
            nn.Sigmoid()
        )

    def forward(self, x):
        batch_size = x['rgb'].size(0)

        # Resize all inputs to input_size
        rgb_input = F.interpolate(x['rgb'], size=self.input_size, mode='bilinear', align_corners=False)
        ndvi_input = F.interpolate(x['ndvi'], size=self.input_size, mode='bilinear', align_corners=False)
        terrain_input = F.interpolate(x['terrain'], size=self.input_size, mode='bilinear', align_corners=False)

        # Extract features
        rgb_features = self.rgb_encoder(rgb_input)  # [B, 128, H/4, W/4]
        ndvi_features = self.ndvi_encoder(ndvi_input)  # [B, 128, H/4, W/4]
        terrain_features = self.terrain_encoder(terrain_input)  # [B, 128, H/4, W/4]

        # Process weather features and expand to match feature map size
        weather_features = self.weather_encoder(x['weather_features'])  # [B, 128]
        weather_features = weather_features.view(batch_size, 128, 1, 1)
        weather_features = F.interpolate(
            weather_features,
            size=self.feature_size,
            mode='nearest'
        )

        # Combine features
        combined_features = torch.cat([
            rgb_features,
            ndvi_features,
            terrain_features,
            weather_features
        ], dim=1)

        # Apply fusion
        fused_features = self.fusion(combined_features)

        # Generate predictions and resize to output_size
        wind_heatmap = self.wind_decoder(fused_features)
        solar_heatmap = self.solar_decoder(fused_features)

        wind_heatmap = F.interpolate(wind_heatmap, size=self.output_size, mode='bilinear', align_corners=False)
        solar_heatmap = F.interpolate(solar_heatmap, size=self.output_size, mode='bilinear', align_corners=False)

        return wind_heatmap, solar_heatmap

class ClimatePredictor:
    def __init__(self, model_path, device=None):
        if device is None:
            self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        else:
            self.device = device
            
        print(f"Using device: {self.device}")
        
        # Load model
        self.model = ClimateNet(input_size=(256, 256), output_size=(64, 64)).to(self.device)
        checkpoint = torch.load(model_path, map_location=self.device)
        
        if "module" in list(checkpoint['model_state_dict'].keys())[0]:
            self.model = torch.nn.DataParallel(self.model)
        
        self.model.load_state_dict(checkpoint['model_state_dict'])
        self.model.eval()
        
        self.rgb_transform = transforms.Compose([
            transforms.Resize((256, 256)),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
        ])
        
        self.single_channel_transform = transforms.Compose([
            transforms.Resize((256, 256)),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.5], std=[0.5])
        ])

    def predict_from_inputs(self, rgb_image, ndvi_image, terrain_image, 
                          elevation_data, wind_speed, wind_direction, 
                          temperature, humidity):
        """Gradio ์ธํ„ฐํŽ˜์ด์Šค์šฉ ์˜ˆ์ธก ํ•จ์ˆ˜"""
        # ์ด๋ฏธ์ง€ ์ „์ฒ˜๋ฆฌ
        rgb_tensor = self.rgb_transform(Image.fromarray(rgb_image)).unsqueeze(0)
        ndvi_tensor = self.single_channel_transform(Image.fromarray(ndvi_image)).unsqueeze(0)
        terrain_tensor = self.single_channel_transform(Image.fromarray(terrain_image)).unsqueeze(0)
        
        # ๊ณ ๋„ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ
        elevation_tensor = torch.from_numpy(elevation_data).float().unsqueeze(0).unsqueeze(0)
        elevation_tensor = (elevation_tensor - elevation_tensor.min()) / (elevation_tensor.max() - elevation_tensor.min())
        
        # ๊ธฐ์ƒ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ
        weather_features = np.array([wind_speed, wind_direction, temperature, humidity])
        weather_features = (weather_features - weather_features.min()) / (weather_features.max() - weather_features.min())
        weather_features = torch.tensor(weather_features, dtype=torch.float32).unsqueeze(0)
        
        # ๋””๋ฐ”์ด์Šค๋กœ ์ด๋™
        sample = {
            'rgb': rgb_tensor.to(self.device),
            'ndvi': ndvi_tensor.to(self.device),
            'terrain': terrain_tensor.to(self.device),
            'elevation': elevation_tensor.to(self.device),
            'weather_features': weather_features.to(self.device)
        }
        
        # ์˜ˆ์ธก
        with torch.no_grad():
            wind_pred, solar_pred = self.model(sample)
        
        # ๊ฒฐ๊ณผ๋ฅผ numpy ๋ฐฐ์—ด๋กœ ๋ณ€ํ™˜
        wind_map = wind_pred.cpu().numpy()[0, 0]
        solar_map = solar_pred.cpu().numpy()[0, 0]
        
        # ๊ฒฐ๊ณผ ์‹œ๊ฐํ™”
        fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 5))
        
        # ํ’๋ ฅ ๋ฐœ์ „ ์ž ์žฌ๋Ÿ‰ ์‹œ๊ฐํ™”
        sns.heatmap(wind_map, ax=ax1, cmap='YlOrRd', cbar_kws={'label': 'Wind Power Potential'})
        ax1.set_title('Wind Power Potential Map')
        
        # ํƒœ์–‘๊ด‘ ๋ฐœ์ „ ์ž ์žฌ๋Ÿ‰ ์‹œ๊ฐํ™”
        sns.heatmap(solar_map, ax=ax2, cmap='YlOrRd', cbar_kws={'label': 'Solar Power Potential'})
        ax2.set_title('Solar Power Potential Map')
        
        plt.tight_layout()
        
        return fig

# Gradio ์ธํ„ฐํŽ˜์ด์Šค ์ƒ์„ฑ
def create_gradio_interface():
    predictor = ClimatePredictor('best_model.pth')
    
    def predict_and_visualize(rgb_image, ndvi_image, terrain_image, elevation_file,
                            wind_speed, wind_direction, temperature, humidity):
        # Load elevation data
        elevation_data = np.load(elevation_file.name)
        
        # Generate prediction and visualization
        result = predictor.predict_from_inputs(
            rgb_image, ndvi_image, terrain_image, elevation_data,
            wind_speed, wind_direction, temperature, humidity
        )
        return result
    
    interface = gr.Interface(
        fn=predict_and_visualize,
        inputs=[
            gr.Image(label="RGB Satellite Image", type="numpy"),
            gr.Image(label="NDVI Image", type="numpy"),
            gr.Image(label="Terrain Map", type="numpy"),
            gr.File(label="Elevation Data (NPY file)"),
            gr.Number(label="Wind Speed (m/s)", value=5.0),
            gr.Number(label="Wind Direction (degrees)", value=180.0),
            gr.Number(label="Temperature (ยฐC)", value=25.0),
            gr.Number(label="Humidity (%)", value=60.0)
        ],
        outputs=gr.Plot(label="Prediction Results"),
        title="Renewable Energy Potential Predictor",
        description="Upload satellite imagery and environmental data to predict wind and solar power potential.",
        examples=[
            [
                "examples/rgb_example.png",
                "examples/ndvi_example.png",
                "examples/terrain_example.png",
                "examples/elevation_example.npy",
                5.0, 180.0, 25.0, 60.0
            ]
        ]
    )
    return interface

if __name__ == "__main__":
    interface = create_gradio_interface()
    interface.launch()s