HoeioUser commited on
Commit
080a10b
·
verified ·
1 Parent(s): 0de1f49

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +35 -13
README.md CHANGED
@@ -1,13 +1,35 @@
1
- ---
2
- title: NewEnergy
3
- emoji: 🌍
4
- colorFrom: blue
5
- colorTo: red
6
- sdk: gradio
7
- sdk_version: 5.9.0
8
- app_file: app.py
9
- pinned: false
10
- short_description: This is for IE32300
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Renewable Energy Potential Predictor
2
+
3
+ This Hugging Face Space provides an interactive interface for predicting wind and solar power potential based on satellite imagery and environmental data.
4
+
5
+ ## How to Use
6
+
7
+ 1. Upload the required images:
8
+ - RGB Satellite Image
9
+ - NDVI (Normalized Difference Vegetation Index) Image
10
+ - Terrain Map
11
+ - Elevation Data (as .npy file)
12
+
13
+ 2. Enter weather parameters:
14
+ - Wind Speed (m/s)
15
+ - Wind Direction (degrees)
16
+ - Temperature (°C)
17
+ - Humidity (%)
18
+
19
+ 3. Click "Submit" to generate predictions
20
+
21
+ The model will output two heatmaps showing the predicted wind and solar power potential for the given location.
22
+
23
+ ## Input Requirements
24
+
25
+ - All images should be in RGB or grayscale format
26
+ - Elevation data should be a NumPy array saved as .npy file
27
+ - Weather parameters should be within reasonable ranges
28
+
29
+ ## Example Data
30
+
31
+ The interface includes example data that you can use to test the model. Click "Run Example" to try it out.
32
+
33
+ ## Model Details
34
+
35
+ The predictor uses a deep learning model trained on satellite imagery and environmental data to estimate renewable energy potential. The model architecture combines CNN-based image processing with weather data integration for comprehensive predictions.