Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,154 +1,283 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
4 |
|
5 |
-
|
6 |
-
|
|
|
|
|
7 |
import torch
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
negative_prompt,
|
28 |
-
seed,
|
29 |
-
randomize_seed,
|
30 |
-
width,
|
31 |
-
height,
|
32 |
-
guidance_scale,
|
33 |
-
num_inference_steps,
|
34 |
-
progress=gr.Progress(track_tqdm=True),
|
35 |
-
):
|
36 |
-
if randomize_seed:
|
37 |
-
seed = random.randint(0, MAX_SEED)
|
38 |
-
|
39 |
-
generator = torch.Generator().manual_seed(seed)
|
40 |
-
|
41 |
-
image = pipe(
|
42 |
-
prompt=prompt,
|
43 |
-
negative_prompt=negative_prompt,
|
44 |
-
guidance_scale=guidance_scale,
|
45 |
-
num_inference_steps=num_inference_steps,
|
46 |
-
width=width,
|
47 |
-
height=height,
|
48 |
-
generator=generator,
|
49 |
-
).images[0]
|
50 |
-
|
51 |
-
return image, seed
|
52 |
-
|
53 |
-
|
54 |
-
examples = [
|
55 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
56 |
-
"An astronaut riding a green horse",
|
57 |
-
"A delicious ceviche cheesecake slice",
|
58 |
-
]
|
59 |
-
|
60 |
-
css = """
|
61 |
-
#col-container {
|
62 |
-
margin: 0 auto;
|
63 |
-
max-width: 640px;
|
64 |
}
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
79 |
|
80 |
-
|
|
|
|
|
|
|
81 |
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
)
|
|
|
|
|
|
|
99 |
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
109 |
)
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
minimum=256,
|
114 |
-
maximum=MAX_IMAGE_SIZE,
|
115 |
-
step=32,
|
116 |
-
value=1024, # Replace with defaults that work for your model
|
117 |
-
)
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
)
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
minimum=1,
|
131 |
-
maximum=50,
|
132 |
-
step=1,
|
133 |
-
value=2, # Replace with defaults that work for your model
|
134 |
)
|
135 |
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
)
|
152 |
|
153 |
-
|
154 |
-
|
|
|
1 |
+
"""
|
2 |
+
This file is used for deploying hugging face demo:
|
3 |
+
https://huggingface.co/spaces/sczhou/CodeFormer
|
4 |
+
"""
|
5 |
|
6 |
+
import sys
|
7 |
+
sys.path.append('CodeFormer')
|
8 |
+
import os
|
9 |
+
import cv2
|
10 |
import torch
|
11 |
+
import torch.nn.functional as F
|
12 |
+
import gradio as gr
|
13 |
+
|
14 |
+
from torchvision.transforms.functional import normalize
|
15 |
|
16 |
+
from basicsr.archs.rrdbnet_arch import RRDBNet
|
17 |
+
from basicsr.utils import imwrite, img2tensor, tensor2img
|
18 |
+
from basicsr.utils.download_util import load_file_from_url
|
19 |
+
from basicsr.utils.misc import gpu_is_available, get_device
|
20 |
+
from basicsr.utils.realesrgan_utils import RealESRGANer
|
21 |
+
from basicsr.utils.registry import ARCH_REGISTRY
|
22 |
+
|
23 |
+
from facelib.utils.face_restoration_helper import FaceRestoreHelper
|
24 |
+
from facelib.utils.misc import is_gray
|
25 |
+
|
26 |
+
|
27 |
+
os.system("pip freeze")
|
28 |
+
|
29 |
+
pretrain_model_url = {
|
30 |
+
'codeformer': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth',
|
31 |
+
'detection': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/detection_Resnet50_Final.pth',
|
32 |
+
'parsing': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/parsing_parsenet.pth',
|
33 |
+
'realesrgan': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/RealESRGAN_x2plus.pth'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
}
|
35 |
+
# download weights
|
36 |
+
if not os.path.exists('CodeFormer/weights/CodeFormer/codeformer.pth'):
|
37 |
+
load_file_from_url(url=pretrain_model_url['codeformer'], model_dir='CodeFormer/weights/CodeFormer', progress=True, file_name=None)
|
38 |
+
if not os.path.exists('CodeFormer/weights/facelib/detection_Resnet50_Final.pth'):
|
39 |
+
load_file_from_url(url=pretrain_model_url['detection'], model_dir='CodeFormer/weights/facelib', progress=True, file_name=None)
|
40 |
+
if not os.path.exists('CodeFormer/weights/facelib/parsing_parsenet.pth'):
|
41 |
+
load_file_from_url(url=pretrain_model_url['parsing'], model_dir='CodeFormer/weights/facelib', progress=True, file_name=None)
|
42 |
+
if not os.path.exists('CodeFormer/weights/realesrgan/RealESRGAN_x2plus.pth'):
|
43 |
+
load_file_from_url(url=pretrain_model_url['realesrgan'], model_dir='CodeFormer/weights/realesrgan', progress=True, file_name=None)
|
44 |
|
45 |
+
# download images
|
46 |
+
torch.hub.download_url_to_file(
|
47 |
+
'https://replicate.com/api/models/sczhou/codeformer/files/fa3fe3d1-76b0-4ca8-ac0d-0a925cb0ff54/06.png',
|
48 |
+
'01.png')
|
49 |
+
torch.hub.download_url_to_file(
|
50 |
+
'https://replicate.com/api/models/sczhou/codeformer/files/a1daba8e-af14-4b00-86a4-69cec9619b53/04.jpg',
|
51 |
+
'02.jpg')
|
52 |
+
torch.hub.download_url_to_file(
|
53 |
+
'https://replicate.com/api/models/sczhou/codeformer/files/542d64f9-1712-4de7-85f7-3863009a7c3d/03.jpg',
|
54 |
+
'03.jpg')
|
55 |
+
torch.hub.download_url_to_file(
|
56 |
+
'https://replicate.com/api/models/sczhou/codeformer/files/a11098b0-a18a-4c02-a19a-9a7045d68426/010.jpg',
|
57 |
+
'04.jpg')
|
58 |
+
torch.hub.download_url_to_file(
|
59 |
+
'https://replicate.com/api/models/sczhou/codeformer/files/7cf19c2c-e0cf-4712-9af8-cf5bdbb8d0ee/012.jpg',
|
60 |
+
'05.jpg')
|
61 |
|
62 |
+
def imread(img_path):
|
63 |
+
img = cv2.imread(img_path)
|
64 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
65 |
+
return img
|
66 |
|
67 |
+
# set enhancer with RealESRGAN
|
68 |
+
def set_realesrgan():
|
69 |
+
# half = True if torch.cuda.is_available() else False
|
70 |
+
half = True if gpu_is_available() else False
|
71 |
+
model = RRDBNet(
|
72 |
+
num_in_ch=3,
|
73 |
+
num_out_ch=3,
|
74 |
+
num_feat=64,
|
75 |
+
num_block=23,
|
76 |
+
num_grow_ch=32,
|
77 |
+
scale=2,
|
78 |
+
)
|
79 |
+
upsampler = RealESRGANer(
|
80 |
+
scale=2,
|
81 |
+
model_path="CodeFormer/weights/realesrgan/RealESRGAN_x2plus.pth",
|
82 |
+
model=model,
|
83 |
+
tile=400,
|
84 |
+
tile_pad=40,
|
85 |
+
pre_pad=0,
|
86 |
+
half=half,
|
87 |
+
)
|
88 |
+
return upsampler
|
89 |
|
90 |
+
upsampler = set_realesrgan()
|
91 |
+
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
92 |
+
device = get_device()
|
93 |
+
codeformer_net = ARCH_REGISTRY.get("CodeFormer")(
|
94 |
+
dim_embd=512,
|
95 |
+
codebook_size=1024,
|
96 |
+
n_head=8,
|
97 |
+
n_layers=9,
|
98 |
+
connect_list=["32", "64", "128", "256"],
|
99 |
+
).to(device)
|
100 |
+
ckpt_path = "CodeFormer/weights/CodeFormer/codeformer.pth"
|
101 |
+
checkpoint = torch.load(ckpt_path)["params_ema"]
|
102 |
+
codeformer_net.load_state_dict(checkpoint)
|
103 |
+
codeformer_net.eval()
|
104 |
+
|
105 |
+
os.makedirs('output', exist_ok=True)
|
106 |
+
|
107 |
+
def inference(image, background_enhance, face_upsample, upscale, codeformer_fidelity):
|
108 |
+
"""Run a single prediction on the model"""
|
109 |
+
try: # global try
|
110 |
+
# take the default setting for the demo
|
111 |
+
has_aligned = False
|
112 |
+
only_center_face = False
|
113 |
+
draw_box = False
|
114 |
+
detection_model = "retinaface_resnet50"
|
115 |
+
print('Inp:', image, background_enhance, face_upsample, upscale, codeformer_fidelity)
|
116 |
+
|
117 |
+
img = cv2.imread(str(image), cv2.IMREAD_COLOR)
|
118 |
+
print('\timage size:', img.shape)
|
119 |
+
|
120 |
+
upscale = int(upscale) # convert type to int
|
121 |
+
if upscale > 4: # avoid memory exceeded due to too large upscale
|
122 |
+
upscale = 4
|
123 |
+
if upscale > 2 and max(img.shape[:2])>1000: # avoid memory exceeded due to too large img resolution
|
124 |
+
upscale = 2
|
125 |
+
if max(img.shape[:2]) > 1500: # avoid memory exceeded due to too large img resolution
|
126 |
+
upscale = 1
|
127 |
+
background_enhance = False
|
128 |
+
face_upsample = False
|
129 |
+
|
130 |
+
face_helper = FaceRestoreHelper(
|
131 |
+
upscale,
|
132 |
+
face_size=512,
|
133 |
+
crop_ratio=(1, 1),
|
134 |
+
det_model=detection_model,
|
135 |
+
save_ext="png",
|
136 |
+
use_parse=True,
|
137 |
+
device=device,
|
138 |
+
)
|
139 |
+
bg_upsampler = upsampler if background_enhance else None
|
140 |
+
face_upsampler = upsampler if face_upsample else None
|
141 |
|
142 |
+
if has_aligned:
|
143 |
+
# the input faces are already cropped and aligned
|
144 |
+
img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
|
145 |
+
face_helper.is_gray = is_gray(img, threshold=5)
|
146 |
+
if face_helper.is_gray:
|
147 |
+
print('\tgrayscale input: True')
|
148 |
+
face_helper.cropped_faces = [img]
|
149 |
+
else:
|
150 |
+
face_helper.read_image(img)
|
151 |
+
# get face landmarks for each face
|
152 |
+
num_det_faces = face_helper.get_face_landmarks_5(
|
153 |
+
only_center_face=only_center_face, resize=640, eye_dist_threshold=5
|
154 |
)
|
155 |
+
print(f'\tdetect {num_det_faces} faces')
|
156 |
+
# align and warp each face
|
157 |
+
face_helper.align_warp_face()
|
158 |
|
159 |
+
# face restoration for each cropped face
|
160 |
+
for idx, cropped_face in enumerate(face_helper.cropped_faces):
|
161 |
+
# prepare data
|
162 |
+
cropped_face_t = img2tensor(
|
163 |
+
cropped_face / 255.0, bgr2rgb=True, float32=True
|
164 |
+
)
|
165 |
+
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
|
166 |
+
cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
|
167 |
|
168 |
+
try:
|
169 |
+
with torch.no_grad():
|
170 |
+
output = codeformer_net(
|
171 |
+
cropped_face_t, w=codeformer_fidelity, adain=True
|
172 |
+
)[0]
|
173 |
+
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
|
174 |
+
del output
|
175 |
+
torch.cuda.empty_cache()
|
176 |
+
except RuntimeError as error:
|
177 |
+
print(f"Failed inference for CodeFormer: {error}")
|
178 |
+
restored_face = tensor2img(
|
179 |
+
cropped_face_t, rgb2bgr=True, min_max=(-1, 1)
|
180 |
)
|
181 |
|
182 |
+
restored_face = restored_face.astype("uint8")
|
183 |
+
face_helper.add_restored_face(restored_face)
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
+
# paste_back
|
186 |
+
if not has_aligned:
|
187 |
+
# upsample the background
|
188 |
+
if bg_upsampler is not None:
|
189 |
+
# Now only support RealESRGAN for upsampling background
|
190 |
+
bg_img = bg_upsampler.enhance(img, outscale=upscale)[0]
|
191 |
+
else:
|
192 |
+
bg_img = None
|
193 |
+
face_helper.get_inverse_affine(None)
|
194 |
+
# paste each restored face to the input image
|
195 |
+
if face_upsample and face_upsampler is not None:
|
196 |
+
restored_img = face_helper.paste_faces_to_input_image(
|
197 |
+
upsample_img=bg_img,
|
198 |
+
draw_box=draw_box,
|
199 |
+
face_upsampler=face_upsampler,
|
200 |
)
|
201 |
+
else:
|
202 |
+
restored_img = face_helper.paste_faces_to_input_image(
|
203 |
+
upsample_img=bg_img, draw_box=draw_box
|
|
|
|
|
|
|
|
|
204 |
)
|
205 |
|
206 |
+
# save restored img
|
207 |
+
save_path = f'output/out.png'
|
208 |
+
imwrite(restored_img, str(save_path))
|
209 |
+
|
210 |
+
restored_img = cv2.cvtColor(restored_img, cv2.COLOR_BGR2RGB)
|
211 |
+
return restored_img, save_path
|
212 |
+
except Exception as error:
|
213 |
+
print('Global exception', error)
|
214 |
+
return None, None
|
215 |
+
|
216 |
+
|
217 |
+
title = "CodeFormer: Robust Face Restoration and Enhancement Network"
|
218 |
+
description = r"""<center><img src='https://user-images.githubusercontent.com/14334509/189166076-94bb2cac-4f4e-40fb-a69f-66709e3d98f5.png' alt='CodeFormer logo'></center>
|
219 |
+
<b>Official Gradio demo</b> for <a href='https://github.com/sczhou/CodeFormer' target='_blank'><b>Towards Robust Blind Face Restoration with Codebook Lookup Transformer (NeurIPS 2022)</b></a>.<br>
|
220 |
+
π₯ CodeFormer is a robust face restoration algorithm for old photos or AI-generated faces.<br>
|
221 |
+
π€ Try CodeFormer for improved stable-diffusion generation!<br>
|
222 |
+
"""
|
223 |
+
article = r"""
|
224 |
+
If CodeFormer is helpful, please help to β the <a href='https://github.com/sczhou/CodeFormer' target='_blank'>Github Repo</a>. Thanks!
|
225 |
+
[](https://github.com/sczhou/CodeFormer)
|
226 |
+
|
227 |
+
---
|
228 |
+
|
229 |
+
π **Citation**
|
230 |
+
|
231 |
+
If our work is useful for your research, please consider citing:
|
232 |
+
```bibtex
|
233 |
+
@inproceedings{zhou2022codeformer,
|
234 |
+
author = {Zhou, Shangchen and Chan, Kelvin C.K. and Li, Chongyi and Loy, Chen Change},
|
235 |
+
title = {Towards Robust Blind Face Restoration with Codebook Lookup TransFormer},
|
236 |
+
booktitle = {NeurIPS},
|
237 |
+
year = {2022}
|
238 |
+
}
|
239 |
+
```
|
240 |
+
|
241 |
+
π **License**
|
242 |
+
|
243 |
+
This project is licensed under <a rel="license" href="https://github.com/sczhou/CodeFormer/blob/master/LICENSE">S-Lab License 1.0</a>.
|
244 |
+
Redistribution and use for non-commercial purposes should follow this license.
|
245 |
+
|
246 |
+
π§ **Contact**
|
247 |
+
|
248 |
+
If you have any questions, please feel free to reach me out at <b>[email protected]</b>.
|
249 |
+
|
250 |
+
<div>
|
251 |
+
π€ Find Me:
|
252 |
+
<a href="https://twitter.com/ShangchenZhou"><img style="margin-top:0.5em; margin-bottom:0.5em" src="https://img.shields.io/twitter/follow/ShangchenZhou?label=%40ShangchenZhou&style=social" alt="Twitter Follow"></a>
|
253 |
+
<a href="https://github.com/sczhou"><img style="margin-top:0.5em; margin-bottom:2em" src="https://img.shields.io/github/followers/sczhou?style=social" alt="Github Follow"></a>
|
254 |
+
</div>
|
255 |
+
|
256 |
+
<center><img src='https://visitor-badge-sczhou.glitch.me/badge?page_id=sczhou/CodeFormer' alt='visitors'></center>
|
257 |
+
"""
|
258 |
+
|
259 |
+
demo = gr.Interface(
|
260 |
+
inference, [
|
261 |
+
gr.inputs.Image(type="filepath", label="Input"),
|
262 |
+
gr.inputs.Checkbox(default=True, label="Background_Enhance"),
|
263 |
+
gr.inputs.Checkbox(default=True, label="Face_Upsample"),
|
264 |
+
gr.inputs.Number(default=2, label="Rescaling_Factor (up to 4)"),
|
265 |
+
gr.Slider(0, 1, value=0.5, step=0.01, label='Codeformer_Fidelity (0 for better quality, 1 for better identity)')
|
266 |
+
], [
|
267 |
+
gr.outputs.Image(type="numpy", label="Output"),
|
268 |
+
gr.outputs.File(label="Download the output")
|
269 |
+
],
|
270 |
+
title=title,
|
271 |
+
description=description,
|
272 |
+
article=article,
|
273 |
+
examples=[
|
274 |
+
['01.png', True, True, 2, 0.7],
|
275 |
+
['02.jpg', True, True, 2, 0.7],
|
276 |
+
['03.jpg', True, True, 2, 0.7],
|
277 |
+
['04.jpg', True, True, 2, 0.1],
|
278 |
+
['05.jpg', True, True, 2, 0.1]
|
279 |
+
]
|
280 |
)
|
281 |
|
282 |
+
demo.queue(concurrency_count=2)
|
283 |
+
demo.launch()
|