Hotair8914 commited on
Commit
e9dcad6
·
verified ·
1 Parent(s): daa8d17

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -60
app.py CHANGED
@@ -1,64 +1,35 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ import torch
4
+
5
+ # Load pre-trained model and tokenizer
6
+ def load_model(model_name):
7
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
8
+ model = AutoModelForCausalLM.from_pretrained(model_name)
9
+ device = "cuda" if torch.cuda.is_available() else "cpu"
10
+ model = model.to(device)
11
+ return tokenizer, model, device
12
+
13
+ # Function to generate chat responses
14
+ def chat_with_niti(message, history):
15
+ tokenizer, model, device = load_model("facebook/mbart-large-50")
16
+ input_ids = tokenizer.encode(message, return_tensors="pt").to(device)
17
+ output = model.generate(
18
+ input_ids,
19
+ max_length=100,
20
+ temperature=0.7,
21
+ num_return_sequences=1,
22
+ pad_token_id=tokenizer.eos_token_id
23
+ )
24
+ response = tokenizer.decode(output[0], skip_special_tokens=True)
25
+ return response
26
+
27
+ # Create Gradio chat interface
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  demo = gr.ChatInterface(
29
+ fn=chat_with_niti,
30
+ title="Niti - Your AI Chatbot",
31
+ description="Ask Niti anything in Hindi, Hinglish, or English!"
 
 
 
 
 
 
 
 
 
 
32
  )
33
 
34
+ # Launch the interface
35
+ demo.launch()