File size: 5,457 Bytes
57432d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import tempfile

import numpy as np
import torch
import trimesh
from shap_e.diffusion.gaussian_diffusion import diffusion_from_config
from shap_e.diffusion.sample import sample_latents
from shap_e.models.download import load_config, load_model
from shap_e.models.nn.camera import (DifferentiableCameraBatch,
                                     DifferentiableProjectiveCamera)
from shap_e.models.transmitter.base import Transmitter, VectorDecoder
from shap_e.rendering.torch_mesh import TorchMesh
from shap_e.util.collections import AttrDict
from shap_e.util.image_util import load_image


# Copied from https://github.com/openai/shap-e/blob/d99cedaea18e0989e340163dbaeb4b109fa9e8ec/shap_e/util/notebooks.py#L15-L42
def create_pan_cameras(size: int,
                       device: torch.device) -> DifferentiableCameraBatch:
    origins = []
    xs = []
    ys = []
    zs = []
    for theta in np.linspace(0, 2 * np.pi, num=20):
        z = np.array([np.sin(theta), np.cos(theta), -0.5])
        z /= np.sqrt(np.sum(z**2))
        origin = -z * 4
        x = np.array([np.cos(theta), -np.sin(theta), 0.0])
        y = np.cross(z, x)
        origins.append(origin)
        xs.append(x)
        ys.append(y)
        zs.append(z)
    return DifferentiableCameraBatch(
        shape=(1, len(xs)),
        flat_camera=DifferentiableProjectiveCamera(
            origin=torch.from_numpy(np.stack(origins,
                                             axis=0)).float().to(device),
            x=torch.from_numpy(np.stack(xs, axis=0)).float().to(device),
            y=torch.from_numpy(np.stack(ys, axis=0)).float().to(device),
            z=torch.from_numpy(np.stack(zs, axis=0)).float().to(device),
            width=size,
            height=size,
            x_fov=0.7,
            y_fov=0.7,
        ),
    )


# Copied from https://github.com/openai/shap-e/blob/8625e7c15526d8510a2292f92165979268d0e945/shap_e/util/notebooks.py#LL64C1-L76C33
@torch.no_grad()
def decode_latent_mesh(
    xm: Transmitter | VectorDecoder,
    latent: torch.Tensor,
) -> TorchMesh:
    decoded = xm.renderer.render_views(
        AttrDict(cameras=create_pan_cameras(
            2, latent.device)),  # lowest resolution possible
        params=(xm.encoder if isinstance(xm, Transmitter) else
                xm).bottleneck_to_params(latent[None]),
        options=AttrDict(rendering_mode='stf', render_with_direction=False),
    )
    return decoded.raw_meshes[0]


class Model:
    def __init__(self):
        self.device = torch.device(
            'cuda' if torch.cuda.is_available() else 'cpu')
        self.xm = load_model('transmitter', device=self.device)
        self.diffusion = diffusion_from_config(load_config('diffusion'))
        self.model_text = None
        self.model_image = None

    def load_model(self, model_name: str) -> None:
        assert model_name in ['text300M', 'image300M']
        if model_name == 'text300M' and self.model_text is None:
            self.model_text = load_model(model_name, device=self.device)
        elif model_name == 'image300M' and self.model_image is None:
            self.model_image = load_model(model_name, device=self.device)

    def to_glb(self, latent: torch.Tensor) -> str:
        ply_path = tempfile.NamedTemporaryFile(suffix='.ply',
                                               delete=False,
                                               mode='w+b')
        decode_latent_mesh(self.xm, latent).tri_mesh().write_ply(ply_path)

        mesh = trimesh.load(ply_path.name)
        rot = trimesh.transformations.rotation_matrix(-np.pi / 2, [1, 0, 0])
        mesh = mesh.apply_transform(rot)
        rot = trimesh.transformations.rotation_matrix(np.pi, [0, 1, 0])
        mesh = mesh.apply_transform(rot)

        mesh_path = tempfile.NamedTemporaryFile(suffix='.glb', delete=False)
        mesh.export(mesh_path.name, file_type='glb')

        return mesh_path.name

    def run_text(self,
                 prompt: str,
                 seed: int = 0,
                 guidance_scale: float = 15.0,
                 num_steps: int = 64) -> str:
        self.load_model('text300M')
        torch.manual_seed(seed)

        latents = sample_latents(
            batch_size=1,
            model=self.model_text,
            diffusion=self.diffusion,
            guidance_scale=guidance_scale,
            model_kwargs=dict(texts=[prompt]),
            progress=True,
            clip_denoised=True,
            use_fp16=True,
            use_karras=True,
            karras_steps=num_steps,
            sigma_min=1e-3,
            sigma_max=160,
            s_churn=0,
        )
        return self.to_glb(latents[0])

    def run_image(self,
                  image_path: str,
                  seed: int = 0,
                  guidance_scale: float = 3.0,
                  num_steps: int = 64) -> str:
        self.load_model('image300M')
        torch.manual_seed(seed)

        image = load_image(image_path)
        latents = sample_latents(
            batch_size=1,
            model=self.model_image,
            diffusion=self.diffusion,
            guidance_scale=guidance_scale,
            model_kwargs=dict(images=[image]),
            progress=True,
            clip_denoised=True,
            use_fp16=True,
            use_karras=True,
            karras_steps=num_steps,
            sigma_min=1e-3,
            sigma_max=160,
            s_churn=0,
        )
        return self.to_glb(latents[0])