Hrishikesh332 commited on
Commit
0c9b828
·
1 Parent(s): 98d9b42

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +47 -0
app.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import requests
3
+ from io import BytesIO
4
+ from PIL import Image
5
+ import os
6
+ from transformers import AutoFeatureExtractor, AutoModelForImageClassification
7
+
8
+
9
+ api_key = os.environ['API_KEY']
10
+
11
+ API_URL = "https://api-inference.huggingface.co/models/Hrishikesh332/autotrain-meme-classification-42897109437"
12
+ headers = {"Authorization": f"Bearer {api_key}"}
13
+
14
+ def query(filename):
15
+ with open(filename, "rb") as f:
16
+ data = f.read()
17
+ response = requests.post(API_URL, headers=headers, data=data)
18
+ return response.json()
19
+
20
+
21
+
22
+ st.markdown("<h1 style='text-align: center;'>Memeter 💬</h1>", unsafe_allow_html=True)
23
+ st.markdown("---")
24
+ with st.sidebar:
25
+ st.title("Memometer")
26
+ st.caption('''
27
+ Memeter is an application used for the classification of whether the images provided is meme or not meme
28
+ ''', unsafe_allow_html=False)
29
+
30
+ img = st.file_uploader("Choose an image", type=["jpg", "jpeg", "png"])
31
+
32
+ # def predict(image):
33
+ # inputs = extractor(images=image, return_tensors="pt")
34
+
35
+ # outputs = model(**inputs)
36
+ # scores = outputs.logits.detach().numpy()
37
+ # return scores
38
+
39
+ if img is not None:
40
+ try:
41
+ image = Image.open(BytesIO(img.read()))
42
+ output = query(image)
43
+ st.write("Predicted Output:", Output)
44
+ except:
45
+ st.write("Pleas do upload the image in the correct format!")
46
+
47
+