Spaces:
Runtime error
Runtime error
Commit
·
0cbbcf7
1
Parent(s):
326eb74
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
import streamlit as st
|
|
|
|
|
2 |
from PIL import Image
|
3 |
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
|
4 |
|
@@ -7,6 +9,9 @@ def load_image(img):
|
|
7 |
return im
|
8 |
size=20
|
9 |
|
|
|
|
|
|
|
10 |
st.markdown("<h1 style='text-align: center;'>Memeter 💬</h1>", unsafe_allow_html=True)
|
11 |
st.markdown("---")
|
12 |
with st.sidebar:
|
@@ -15,12 +20,21 @@ with st.sidebar:
|
|
15 |
Memeter is an application used for the classification of whether the images provided is meme or not meme
|
16 |
''', unsafe_allow_html=False)
|
17 |
|
18 |
-
img = st.file_uploader("Choose
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
if img is not None:
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
25 |
|
26 |
|
|
|
1 |
import streamlit as st
|
2 |
+
import requests
|
3 |
+
from io import BytesIO
|
4 |
from PIL import Image
|
5 |
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
|
6 |
|
|
|
9 |
return im
|
10 |
size=20
|
11 |
|
12 |
+
extractor = AutoFeatureExtractor.from_pretrained("Hrishikesh332/autotrain-meme-classification-42897109437")
|
13 |
+
model = AutoModelForImageClassification.from_pretrained("Hrishikesh332/autotrain-meme-classification-42897109437")
|
14 |
+
|
15 |
st.markdown("<h1 style='text-align: center;'>Memeter 💬</h1>", unsafe_allow_html=True)
|
16 |
st.markdown("---")
|
17 |
with st.sidebar:
|
|
|
20 |
Memeter is an application used for the classification of whether the images provided is meme or not meme
|
21 |
''', unsafe_allow_html=False)
|
22 |
|
23 |
+
img = st.file_uploader("Choose an image", type=["jpg", "jpeg", "png"])
|
24 |
+
|
25 |
+
def predict(image):
|
26 |
+
inputs = extractor(images=image, return_tensors="pt")
|
27 |
+
|
28 |
+
outputs = model(**inputs)
|
29 |
+
scores = outputs.logits.detach().numpy()
|
30 |
+
return scores
|
31 |
+
|
32 |
if img is not None:
|
33 |
+
try:
|
34 |
+
image = Image.open(BytesIO(img.read()))
|
35 |
+
s = predict(image)
|
36 |
+
st.write("Value:", s)
|
37 |
+
except:
|
38 |
+
st.write("Pleas do upload the image in the correct format!")
|
39 |
|
40 |
|