import streamlit as st import requests from io import BytesIO from PIL import Image from transformers import AutoFeatureExtractor, AutoModelForImageClassification def load_image(img): im=Image.open(img) return im size=20 extractor = AutoFeatureExtractor.from_pretrained("Hrishikesh332/autotrain-meme-classification-42897109437") model = AutoModelForImageClassification.from_pretrained("Hrishikesh332/autotrain-meme-classification-42897109437") st.markdown("

Memeter 💬

", unsafe_allow_html=True) st.markdown("---") with st.sidebar: st.title("Memometer") st.caption(''' Memeter is an application used for the classification of whether the images provided is meme or not meme ''', unsafe_allow_html=False) img = st.file_uploader("Choose an image", type=["jpg", "jpeg", "png"]) def predict(image): inputs = extractor(images=image, return_tensors="pt") outputs = model(**inputs) scores = outputs.logits.detach().numpy() return scores if img is not None: try: image = Image.open(BytesIO(img.read())) s = predict(image) st.write("Value:", s) except: st.write("Pleas do upload the image in the correct format!")