import gradio as gr from huggingface_hub import InferenceClient """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ import os client = InferenceClient(model="HuggingFaceH4/zephyr-7b-beta", token=os.getenv("HUGGINGFACEHUB_API_TOKEN")) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch() import os from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel import torch # Load Hugging Face API token securely api_token = os.getenv("HUGGINGFACEHUB_API_TOKEN") if not api_token: raise ValueError("❌ ERROR: Hugging Face API token is not set. Please set it as an environment variable.") # Define model names base_model_name = "unsloth/qwen2.5-math-7b-bnb-4bit" peft_model_name = "Hrushi02/Root_Math" # Load base model with authentication base_model = AutoModelForCausalLM.from_pretrained( base_model_name, torch_dtype=torch.float16, device_map="auto", use_auth_token=api_token # ✅ Correct ) # Load fine-tuned model model = PeftModel.from_pretrained(base_model, peft_model_name, token=api_token) # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(base_model_name, token=api_token)