Spaces:
Running
Running
Hu
commited on
Commit
·
2f110b2
1
Parent(s):
ef48324
initial commit
Browse files- LR_image.png +0 -0
- SRCNNmodel_trained.pt +3 -0
- barbara.png +0 -0
- demo.py +54 -0
- model.py +80 -0
LR_image.png
ADDED
![]() |
SRCNNmodel_trained.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c1c33c257abf0eef36eb73c60fbc1863ebf7612cefb07c6a7aea85b283b03ddb
|
3 |
+
size 34455
|
barbara.png
ADDED
![]() |
demo.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from model import SRCNNModel, pred_SRCNN
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
|
10 |
+
title = "Super Resolution with CNN"
|
11 |
+
description = """
|
12 |
+
|
13 |
+
Your low resolution image will be reconstructed to high resolution with a scale of 2 with a convolutional neural network!
|
14 |
+
|
15 |
+
CNN output on the left, bicubic interpolation output on the right.
|
16 |
+
|
17 |
+
|
18 |
+
"""
|
19 |
+
|
20 |
+
article = "Check out the origianl [paper](https://arxiv.org/abs/1501.00092) proposed by Dong *et al*."
|
21 |
+
|
22 |
+
# load model
|
23 |
+
print("Loading SRCNN model...")
|
24 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
25 |
+
|
26 |
+
model = SRCNNModel().to(device)
|
27 |
+
model.load_state_dict(torch.load('SRCNNmodel_trained.pt'))
|
28 |
+
model.eval()
|
29 |
+
print("SRCNN model loaded!")
|
30 |
+
|
31 |
+
def image_grid(imgs, rows, cols):
|
32 |
+
'''
|
33 |
+
imgs:list of PILImage
|
34 |
+
'''
|
35 |
+
assert len(imgs) == rows*cols
|
36 |
+
|
37 |
+
w, h = imgs[0].size
|
38 |
+
grid = Image.new('RGB', size=(cols*w, rows*h))
|
39 |
+
grid_w, grid_h = grid.size
|
40 |
+
|
41 |
+
for i, img in enumerate(imgs):
|
42 |
+
grid.paste(img, box=(i%cols*w, i//cols*h))
|
43 |
+
return grid
|
44 |
+
|
45 |
+
def sepia(image_path):
|
46 |
+
# gradio open image as np array
|
47 |
+
image = Image.fromarray(image_path,mode='RGB')
|
48 |
+
out_final,image_bicubic,image = pred_SRCNN(model=model,image=image,device=device)
|
49 |
+
grid = image_grid([out_final,image_bicubic],1,2)
|
50 |
+
return grid
|
51 |
+
|
52 |
+
demo = gr.Interface(fn = sepia, inputs=gr.Image(shape=(200, 200)), outputs="image",title=title,description = description,article = article,examples=['LR_image.png','barbara.png'])
|
53 |
+
|
54 |
+
demo.launch(share=True)
|
model.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import torchvision
|
5 |
+
from torchvision.transforms import transforms
|
6 |
+
import numpy as np
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
class SRCNNModel(nn.Module):
|
10 |
+
def __init__(self):
|
11 |
+
super(SRCNNModel, self).__init__()
|
12 |
+
self.conv1=nn.Conv2d(1,64,9,padding=4)
|
13 |
+
self.conv2=nn.Conv2d(64,32,1,padding=0)
|
14 |
+
self.conv3=nn.Conv2d(32,1,5,padding=2)
|
15 |
+
|
16 |
+
def forward(self,x):
|
17 |
+
out = F.relu(self.conv1(x))
|
18 |
+
out = F.relu(self.conv2(out))
|
19 |
+
out = self.conv3(out)
|
20 |
+
return out
|
21 |
+
|
22 |
+
def pred_SRCNN(model,image,device,scale_factor=2):
|
23 |
+
"""
|
24 |
+
model: SRCNN model
|
25 |
+
image: low resolution image PILLOW image
|
26 |
+
scale_factor: scale factor for resolution
|
27 |
+
device: cuda or cpu
|
28 |
+
"""
|
29 |
+
model.to(device)
|
30 |
+
model.eval()
|
31 |
+
|
32 |
+
# open image
|
33 |
+
# image = Image.open(image_path)
|
34 |
+
# split channels
|
35 |
+
y, cb, cr= image.convert('YCbCr').split()
|
36 |
+
# size will be used in image transform
|
37 |
+
original_size = y.size
|
38 |
+
|
39 |
+
# bicubic interpolate it to the original size
|
40 |
+
y_bicubic = transforms.Resize((original_size[1]*scale_factor,original_size[0]*scale_factor),interpolation=Image.BICUBIC)(y)
|
41 |
+
cb_bicubic = transforms.Resize((original_size[1]*scale_factor,original_size[0]*scale_factor),interpolation=Image.BICUBIC)(cb)
|
42 |
+
cr_bicubic = transforms.Resize((original_size[1]*scale_factor,original_size[0]*scale_factor),interpolation=Image.BICUBIC)(cr)
|
43 |
+
# turn it into tensor and add batch dimension
|
44 |
+
y_bicubic = transforms.ToTensor()(y_bicubic).to(device).unsqueeze(0)
|
45 |
+
# get the y channel SRCNN prediction
|
46 |
+
y_pred = model(y_bicubic)
|
47 |
+
# convert it to numpy image
|
48 |
+
y_pred = y_pred[0].cpu().detach().numpy()
|
49 |
+
|
50 |
+
# convert it into regular image pixel values
|
51 |
+
y_pred = y_pred*255
|
52 |
+
y_pred.clip(0,255)
|
53 |
+
# conver y channel from array to PIL image format for merging
|
54 |
+
y_pred_PIL = Image.fromarray(np.uint8(y_pred[0]),mode='L')
|
55 |
+
# merge the SRCNN y channel with cb cr channels
|
56 |
+
out_final = Image.merge('YCbCr',[y_pred_PIL,cb_bicubic,cr_bicubic]).convert('RGB')
|
57 |
+
|
58 |
+
image_bicubic = transforms.Resize((original_size[1]*scale_factor,original_size[0]*scale_factor),interpolation=Image.BICUBIC)(image)
|
59 |
+
return out_final,image_bicubic,image
|
60 |
+
|
61 |
+
|
62 |
+
def main():
|
63 |
+
print("Loading SRCNN model...")
|
64 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
65 |
+
|
66 |
+
model = SRCNNModel().to(device)
|
67 |
+
model.load_state_dict(torch.load('SRCNNmodel_trained.pt'))
|
68 |
+
model.eval()
|
69 |
+
print("SRCNN model loaded!")
|
70 |
+
|
71 |
+
image_path = "LR_image.png"
|
72 |
+
|
73 |
+
out_final,image_bicubic,image = pred_SRCNN(model=model,image_path=image_path,device=device)
|
74 |
+
image.show()
|
75 |
+
out_final.show()
|
76 |
+
image_bicubic.show()
|
77 |
+
|
78 |
+
|
79 |
+
if __name__=="__main__":
|
80 |
+
main()
|