Hu commited on
Commit
840ed11
·
1 Parent(s): 60caba2

change input output

Browse files
Files changed (1) hide show
  1. app.py +19 -20
app.py CHANGED
@@ -10,10 +10,9 @@ from PIL import Image
10
  title = "Super Resolution with CNN"
11
  description = """
12
 
13
- Your low resolution image will be reconstructed to high resolution with a scale of 2 with a convolutional neural network!
14
-
15
- CNN output on the left, bicubic interpolation output on the right.
16
-
17
 
18
  """
19
 
@@ -28,27 +27,27 @@ model.load_state_dict(torch.load('SRCNNmodel_trained.pt',map_location=torch.devi
28
  model.eval()
29
  print("SRCNN model loaded!")
30
 
31
- def image_grid(imgs, rows, cols):
32
- '''
33
- imgs:list of PILImage
34
- '''
35
- assert len(imgs) == rows*cols
36
 
37
- w, h = imgs[0].size
38
- grid = Image.new('RGB', size=(cols*w, rows*h))
39
- grid_w, grid_h = grid.size
40
 
41
- for i, img in enumerate(imgs):
42
- grid.paste(img, box=(i%cols*w, i//cols*h))
43
- return grid
44
 
45
- def sepia(image_path):
46
  # gradio open image as np array
47
- image = Image.fromarray(image_path,mode='RGB')
48
  out_final,image_bicubic,image = pred_SRCNN(model=model,image=image,device=device)
49
- grid = image_grid([out_final,image_bicubic],1,2)
50
- return grid
51
 
52
- demo = gr.Interface(fn = sepia, inputs=gr.Image(shape=(200, 200)), outputs="image",title=title,description = description,article = article,examples=['LR_image.png','barbara.png'])
53
 
54
  demo.launch()
 
10
  title = "Super Resolution with CNN"
11
  description = """
12
 
13
+ Your low resolution image will be reconstructed to high resolution with a scale of 2 with a convolutional neural network!<br>
14
+ CNN output on the left, bicubic interpolation output on the right.<br>
15
+ Training and dataset can be found on my [github page](https://github.com/susuhu/super-resolution/blob/main/Super_Resolution.ipynb).<br>
 
16
 
17
  """
18
 
 
27
  model.eval()
28
  print("SRCNN model loaded!")
29
 
30
+ # def image_grid(imgs, rows, cols):
31
+ # '''
32
+ # imgs:list of PILImage
33
+ # '''
34
+ # assert len(imgs) == rows*cols
35
 
36
+ # w, h = imgs[0].size
37
+ # grid = Image.new('RGB', size=(cols*w, rows*h))
38
+ # grid_w, grid_h = grid.size
39
 
40
+ # for i, img in enumerate(imgs):
41
+ # grid.paste(img, box=(i%cols*w, i//cols*h))
42
+ # return grid
43
 
44
+ def sepia(image):
45
  # gradio open image as np array
46
+ image = Image.fromarray(image,mode='RGB')
47
  out_final,image_bicubic,image = pred_SRCNN(model=model,image=image,device=device)
48
+ # grid = image_grid([out_final,image_bicubic],1,2)
49
+ return out_final,image_bicubic
50
 
51
+ demo = gr.Interface(fn = sepia, inputs=gr.inputs.Image(label="Upload image"), [gr.outputs.Image(label="Conv net"), gr.outputs.Image(label="Bicubic interpoloation")],title=title,description = description,article = article,examples=[['LR_image.png'],['barbara.png']])
52
 
53
  demo.launch()