Spaces:
Running
Running
Hu
commited on
Commit
·
aa0b24b
1
Parent(s):
0723193
move model inside app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,6 @@ import gradio as gr
|
|
3 |
import torch
|
4 |
import torch.nn as nn
|
5 |
import torch.nn.functional as F
|
6 |
-
from model import SRCNNModel, pred_SRCNN
|
7 |
from PIL import Image
|
8 |
|
9 |
|
@@ -28,6 +27,75 @@ examples = [
|
|
28 |
["barbara.png"],
|
29 |
]
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
# load model
|
32 |
# print("Loading SRCNN model...")
|
33 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
3 |
import torch
|
4 |
import torch.nn as nn
|
5 |
import torch.nn.functional as F
|
|
|
6 |
from PIL import Image
|
7 |
|
8 |
|
|
|
27 |
["barbara.png"],
|
28 |
]
|
29 |
|
30 |
+
|
31 |
+
class SRCNNModel(nn.Module):
|
32 |
+
def __init__(self):
|
33 |
+
super(SRCNNModel, self).__init__()
|
34 |
+
self.conv1 = nn.Conv2d(1, 64, 9, padding=4)
|
35 |
+
self.conv2 = nn.Conv2d(64, 32, 1, padding=0)
|
36 |
+
self.conv3 = nn.Conv2d(32, 1, 5, padding=2)
|
37 |
+
|
38 |
+
def forward(self, x):
|
39 |
+
out = F.relu(self.conv1(x))
|
40 |
+
out = F.relu(self.conv2(out))
|
41 |
+
out = self.conv3(out)
|
42 |
+
return out
|
43 |
+
|
44 |
+
|
45 |
+
def pred_SRCNN(model, image, device, scale_factor=2):
|
46 |
+
"""
|
47 |
+
model: SRCNN model
|
48 |
+
image: low resolution image PILLOW image
|
49 |
+
scale_factor: scale factor for resolution
|
50 |
+
device: cuda or cpu
|
51 |
+
"""
|
52 |
+
model.to(device)
|
53 |
+
model.eval()
|
54 |
+
|
55 |
+
# open image
|
56 |
+
# image = Image.open(image_path)
|
57 |
+
# split channels
|
58 |
+
y, cb, cr = image.convert("YCbCr").split()
|
59 |
+
# size will be used in image transform
|
60 |
+
original_size = y.size
|
61 |
+
|
62 |
+
# bicubic interpolate it to the original size
|
63 |
+
y_bicubic = transforms.Resize(
|
64 |
+
(original_size[1] * scale_factor, original_size[0] * scale_factor),
|
65 |
+
interpolation=Image.BICUBIC,
|
66 |
+
)(y)
|
67 |
+
cb_bicubic = transforms.Resize(
|
68 |
+
(original_size[1] * scale_factor, original_size[0] * scale_factor),
|
69 |
+
interpolation=Image.BICUBIC,
|
70 |
+
)(cb)
|
71 |
+
cr_bicubic = transforms.Resize(
|
72 |
+
(original_size[1] * scale_factor, original_size[0] * scale_factor),
|
73 |
+
interpolation=Image.BICUBIC,
|
74 |
+
)(cr)
|
75 |
+
# turn it into tensor and add batch dimension
|
76 |
+
y_bicubic = transforms.ToTensor()(y_bicubic).to(device).unsqueeze(0)
|
77 |
+
# get the y channel SRCNN prediction
|
78 |
+
y_pred = model(y_bicubic)
|
79 |
+
# convert it to numpy image
|
80 |
+
y_pred = y_pred[0].cpu().detach().numpy()
|
81 |
+
|
82 |
+
# convert it into regular image pixel values
|
83 |
+
y_pred = y_pred * 255
|
84 |
+
y_pred.clip(0, 255)
|
85 |
+
# conver y channel from array to PIL image format for merging
|
86 |
+
y_pred_PIL = Image.fromarray(np.uint8(y_pred[0]), mode="L")
|
87 |
+
# merge the SRCNN y channel with cb cr channels
|
88 |
+
out_final = Image.merge("YCbCr", [y_pred_PIL, cb_bicubic, cr_bicubic]).convert(
|
89 |
+
"RGB"
|
90 |
+
)
|
91 |
+
|
92 |
+
image_bicubic = transforms.Resize(
|
93 |
+
(original_size[1] * scale_factor, original_size[0] * scale_factor),
|
94 |
+
interpolation=Image.BICUBIC,
|
95 |
+
)(image)
|
96 |
+
return out_final, image_bicubic, image
|
97 |
+
|
98 |
+
|
99 |
# load model
|
100 |
# print("Loading SRCNN model...")
|
101 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
model.py
DELETED
@@ -1,80 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
import torchvision
|
5 |
-
from torchvision.transforms import transforms
|
6 |
-
import numpy as np
|
7 |
-
from PIL import Image
|
8 |
-
|
9 |
-
class SRCNNModel(nn.Module):
|
10 |
-
def __init__(self):
|
11 |
-
super(SRCNNModel, self).__init__()
|
12 |
-
self.conv1=nn.Conv2d(1,64,9,padding=4)
|
13 |
-
self.conv2=nn.Conv2d(64,32,1,padding=0)
|
14 |
-
self.conv3=nn.Conv2d(32,1,5,padding=2)
|
15 |
-
|
16 |
-
def forward(self,x):
|
17 |
-
out = F.relu(self.conv1(x))
|
18 |
-
out = F.relu(self.conv2(out))
|
19 |
-
out = self.conv3(out)
|
20 |
-
return out
|
21 |
-
|
22 |
-
def pred_SRCNN(model,image,device,scale_factor=2):
|
23 |
-
"""
|
24 |
-
model: SRCNN model
|
25 |
-
image: low resolution image PILLOW image
|
26 |
-
scale_factor: scale factor for resolution
|
27 |
-
device: cuda or cpu
|
28 |
-
"""
|
29 |
-
model.to(device)
|
30 |
-
model.eval()
|
31 |
-
|
32 |
-
# open image
|
33 |
-
# image = Image.open(image_path)
|
34 |
-
# split channels
|
35 |
-
y, cb, cr= image.convert('YCbCr').split()
|
36 |
-
# size will be used in image transform
|
37 |
-
original_size = y.size
|
38 |
-
|
39 |
-
# bicubic interpolate it to the original size
|
40 |
-
y_bicubic = transforms.Resize((original_size[1]*scale_factor,original_size[0]*scale_factor),interpolation=Image.BICUBIC)(y)
|
41 |
-
cb_bicubic = transforms.Resize((original_size[1]*scale_factor,original_size[0]*scale_factor),interpolation=Image.BICUBIC)(cb)
|
42 |
-
cr_bicubic = transforms.Resize((original_size[1]*scale_factor,original_size[0]*scale_factor),interpolation=Image.BICUBIC)(cr)
|
43 |
-
# turn it into tensor and add batch dimension
|
44 |
-
y_bicubic = transforms.ToTensor()(y_bicubic).to(device).unsqueeze(0)
|
45 |
-
# get the y channel SRCNN prediction
|
46 |
-
y_pred = model(y_bicubic)
|
47 |
-
# convert it to numpy image
|
48 |
-
y_pred = y_pred[0].cpu().detach().numpy()
|
49 |
-
|
50 |
-
# convert it into regular image pixel values
|
51 |
-
y_pred = y_pred*255
|
52 |
-
y_pred.clip(0,255)
|
53 |
-
# conver y channel from array to PIL image format for merging
|
54 |
-
y_pred_PIL = Image.fromarray(np.uint8(y_pred[0]),mode='L')
|
55 |
-
# merge the SRCNN y channel with cb cr channels
|
56 |
-
out_final = Image.merge('YCbCr',[y_pred_PIL,cb_bicubic,cr_bicubic]).convert('RGB')
|
57 |
-
|
58 |
-
image_bicubic = transforms.Resize((original_size[1]*scale_factor,original_size[0]*scale_factor),interpolation=Image.BICUBIC)(image)
|
59 |
-
return out_final,image_bicubic,image
|
60 |
-
|
61 |
-
|
62 |
-
# def main():
|
63 |
-
# print("Loading SRCNN model...")
|
64 |
-
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
65 |
-
|
66 |
-
# model = SRCNNModel().to(device)
|
67 |
-
# model.load_state_dict(torch.load('SRCNNmodel_trained.pt'))
|
68 |
-
# model.eval()
|
69 |
-
# print("SRCNN model loaded!")
|
70 |
-
|
71 |
-
# image_path = "LR_image.png"
|
72 |
-
|
73 |
-
# out_final,image_bicubic,image = pred_SRCNN(model=model,image_path=image_path,device=device)
|
74 |
-
# image.show()
|
75 |
-
# out_final.show()
|
76 |
-
# image_bicubic.show()
|
77 |
-
|
78 |
-
|
79 |
-
# if __name__=="__main__":
|
80 |
-
# main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|