Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@ import gradio as gr
|
|
2 |
import numpy as np
|
3 |
import random
|
4 |
#import spaces #[uncomment to use ZeroGPU]
|
5 |
-
from diffusers import
|
6 |
import torch
|
7 |
|
8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -13,22 +13,47 @@ if torch.cuda.is_available():
|
|
13 |
else:
|
14 |
torch_dtype = torch.float32
|
15 |
|
16 |
-
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
17 |
-
pipe = pipe.to(device)
|
18 |
-
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
MAX_IMAGE_SIZE = 1024
|
21 |
|
22 |
#@spaces.GPU #[uncomment to use ZeroGPU]
|
23 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
if randomize_seed:
|
26 |
seed = random.randint(0, MAX_SEED)
|
27 |
|
28 |
generator = torch.Generator().manual_seed(seed)
|
|
|
|
|
|
|
29 |
|
30 |
image = pipe(
|
31 |
prompt = prompt,
|
|
|
|
|
32 |
negative_prompt = negative_prompt,
|
33 |
guidance_scale = guidance_scale,
|
34 |
num_inference_steps = num_inference_steps,
|
@@ -136,7 +161,7 @@ with gr.Blocks(css=css) as demo:
|
|
136 |
)
|
137 |
|
138 |
run_button.click(
|
139 |
-
fn=
|
140 |
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
141 |
outputs = [result, seed]
|
142 |
)
|
@@ -159,6 +184,8 @@ with gr.Blocks(css=css) as demo:
|
|
159 |
)
|
160 |
|
161 |
run_button = gr.Button("Run", scale=0)
|
|
|
|
|
162 |
|
163 |
result = gr.Image(label="Result", show_label=False)
|
164 |
|
@@ -216,6 +243,14 @@ with gr.Blocks(css=css) as demo:
|
|
216 |
step=1,
|
217 |
value=25, #Replace with defaults that work for your model
|
218 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
|
220 |
gr.Examples(
|
221 |
examples = examples,
|
@@ -223,15 +258,9 @@ with gr.Blocks(css=css) as demo:
|
|
223 |
)
|
224 |
|
225 |
run_button.click(
|
226 |
-
fn=
|
227 |
-
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
228 |
outputs = [result, seed]
|
229 |
)
|
230 |
-
# gr.on(
|
231 |
-
# triggers=[run_button.click, prompt.submit],
|
232 |
-
# fn = infer,
|
233 |
-
# inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
234 |
-
# outputs = [result, seed]
|
235 |
-
# )
|
236 |
|
237 |
demo.queue().launch()
|
|
|
2 |
import numpy as np
|
3 |
import random
|
4 |
#import spaces #[uncomment to use ZeroGPU]
|
5 |
+
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline
|
6 |
import torch
|
7 |
|
8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
13 |
else:
|
14 |
torch_dtype = torch.float32
|
15 |
|
|
|
|
|
|
|
16 |
MAX_SEED = np.iinfo(np.int32).max
|
17 |
MAX_IMAGE_SIZE = 1024
|
18 |
|
19 |
#@spaces.GPU #[uncomment to use ZeroGPU]
|
20 |
+
def infer_t2i(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
|
21 |
+
|
22 |
+
if randomize_seed:
|
23 |
+
seed = random.randint(0, MAX_SEED)
|
24 |
+
|
25 |
+
generator = torch.Generator().manual_seed(seed)
|
26 |
+
|
27 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
28 |
+
pipe = pipe.to(device)
|
29 |
+
|
30 |
+
image = pipe(
|
31 |
+
prompt = prompt,
|
32 |
+
negative_prompt = negative_prompt,
|
33 |
+
guidance_scale = guidance_scale,
|
34 |
+
num_inference_steps = num_inference_steps,
|
35 |
+
width = width,
|
36 |
+
height = height,
|
37 |
+
generator = generator
|
38 |
+
).images[0]
|
39 |
+
|
40 |
+
return image, seed
|
41 |
+
|
42 |
+
#@spaces.GPU #[uncomment to use ZeroGPU]
|
43 |
+
def infer_i2i(prompt, image, strength, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
|
44 |
|
45 |
if randomize_seed:
|
46 |
seed = random.randint(0, MAX_SEED)
|
47 |
|
48 |
generator = torch.Generator().manual_seed(seed)
|
49 |
+
|
50 |
+
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
51 |
+
pipe = pipe.to(device)
|
52 |
|
53 |
image = pipe(
|
54 |
prompt = prompt,
|
55 |
+
image = image.resize((width, height)),
|
56 |
+
strength = strength,
|
57 |
negative_prompt = negative_prompt,
|
58 |
guidance_scale = guidance_scale,
|
59 |
num_inference_steps = num_inference_steps,
|
|
|
161 |
)
|
162 |
|
163 |
run_button.click(
|
164 |
+
fn=infer_t2i,
|
165 |
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
166 |
outputs = [result, seed]
|
167 |
)
|
|
|
184 |
)
|
185 |
|
186 |
run_button = gr.Button("Run", scale=0)
|
187 |
+
|
188 |
+
image_upload_input = gr.Image(label="Upload an Image", type="pil")
|
189 |
|
190 |
result = gr.Image(label="Result", show_label=False)
|
191 |
|
|
|
243 |
step=1,
|
244 |
value=25, #Replace with defaults that work for your model
|
245 |
)
|
246 |
+
|
247 |
+
editing_strength = gr.Slider(
|
248 |
+
label="Strength of editing",
|
249 |
+
minimum=0,
|
250 |
+
maximum=1,
|
251 |
+
step=0.01,
|
252 |
+
value=0.5, #Replace with defaults that work for your model
|
253 |
+
)
|
254 |
|
255 |
gr.Examples(
|
256 |
examples = examples,
|
|
|
258 |
)
|
259 |
|
260 |
run_button.click(
|
261 |
+
fn=infer_i2i,
|
262 |
+
inputs = [prompt, image_upload_input, editing_strength, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
263 |
outputs = [result, seed]
|
264 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
|
266 |
demo.queue().launch()
|