Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -21,14 +21,14 @@ MAX_SEED = np.iinfo(np.int32).max
|
|
21 |
MAX_IMAGE_SIZE = 1024
|
22 |
|
23 |
#@spaces.GPU #[uncomment to use ZeroGPU]
|
24 |
-
def infer_t2i(
|
25 |
|
26 |
if randomize_seed:
|
27 |
seed = random.randint(0, MAX_SEED)
|
28 |
|
29 |
generator = torch.Generator().manual_seed(seed)
|
30 |
|
31 |
-
pipe = StableDiffusionPipeline.from_pretrained(
|
32 |
pipe = pipe.to(device)
|
33 |
|
34 |
image = pipe(
|
@@ -44,14 +44,14 @@ def infer_t2i(model_repo_id, prompt, negative_prompt, seed, randomize_seed, widt
|
|
44 |
return image, seed
|
45 |
|
46 |
#@spaces.GPU #[uncomment to use ZeroGPU]
|
47 |
-
def infer_i2i(
|
48 |
|
49 |
if randomize_seed:
|
50 |
seed = random.randint(0, MAX_SEED)
|
51 |
|
52 |
generator = torch.Generator().manual_seed(seed)
|
53 |
|
54 |
-
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
55 |
pipe = pipe.to(device)
|
56 |
|
57 |
image = pipe(
|
@@ -69,14 +69,14 @@ def infer_i2i(model_repo_id, prompt, image, strength, negative_prompt, seed, ran
|
|
69 |
return image, seed
|
70 |
|
71 |
#@spaces.GPU #[uncomment to use ZeroGPU]
|
72 |
-
def infer_ip_adapter(
|
73 |
|
74 |
if randomize_seed:
|
75 |
seed = random.randint(0, MAX_SEED)
|
76 |
|
77 |
generator = torch.Generator().manual_seed(seed)
|
78 |
|
79 |
-
pipe = StableDiffusionPipeline.from_pretrained(
|
80 |
pipe = pipe.to(device)
|
81 |
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-plus_sd15.bin")
|
82 |
pipeline.set_ip_adapter_scale(scale)
|
@@ -196,7 +196,7 @@ with gr.Blocks(css=css) as demo:
|
|
196 |
|
197 |
run_button.click(
|
198 |
fn=infer_t2i,
|
199 |
-
inputs = [
|
200 |
outputs = [result, seed]
|
201 |
)
|
202 |
|
@@ -295,7 +295,7 @@ with gr.Blocks(css=css) as demo:
|
|
295 |
|
296 |
run_button.click(
|
297 |
fn=infer_i2i,
|
298 |
-
inputs = [
|
299 |
outputs = [result, seed]
|
300 |
)
|
301 |
|
@@ -394,7 +394,7 @@ with gr.Blocks(css=css) as demo:
|
|
394 |
|
395 |
run_button.click(
|
396 |
fn=infer_ip_adapter,
|
397 |
-
inputs = [
|
398 |
outputs = [result, seed]
|
399 |
)
|
400 |
|
|
|
21 |
MAX_IMAGE_SIZE = 1024
|
22 |
|
23 |
#@spaces.GPU #[uncomment to use ZeroGPU]
|
24 |
+
def infer_t2i(model, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
|
25 |
|
26 |
if randomize_seed:
|
27 |
seed = random.randint(0, MAX_SEED)
|
28 |
|
29 |
generator = torch.Generator().manual_seed(seed)
|
30 |
|
31 |
+
pipe = StableDiffusionPipeline.from_pretrained(all_model_id[model], torch_dtype=torch_dtype)
|
32 |
pipe = pipe.to(device)
|
33 |
|
34 |
image = pipe(
|
|
|
44 |
return image, seed
|
45 |
|
46 |
#@spaces.GPU #[uncomment to use ZeroGPU]
|
47 |
+
def infer_i2i(model, prompt, image, strength, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
|
48 |
|
49 |
if randomize_seed:
|
50 |
seed = random.randint(0, MAX_SEED)
|
51 |
|
52 |
generator = torch.Generator().manual_seed(seed)
|
53 |
|
54 |
+
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(all_model_id[model], torch_dtype=torch_dtype)
|
55 |
pipe = pipe.to(device)
|
56 |
|
57 |
image = pipe(
|
|
|
69 |
return image, seed
|
70 |
|
71 |
#@spaces.GPU #[uncomment to use ZeroGPU]
|
72 |
+
def infer_ip_adapter(model, prompt, image, scale, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
|
73 |
|
74 |
if randomize_seed:
|
75 |
seed = random.randint(0, MAX_SEED)
|
76 |
|
77 |
generator = torch.Generator().manual_seed(seed)
|
78 |
|
79 |
+
pipe = StableDiffusionPipeline.from_pretrained(all_model_id[model], torch_dtype=torch_dtype)
|
80 |
pipe = pipe.to(device)
|
81 |
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-plus_sd15.bin")
|
82 |
pipeline.set_ip_adapter_scale(scale)
|
|
|
196 |
|
197 |
run_button.click(
|
198 |
fn=infer_t2i,
|
199 |
+
inputs = [prompt, model_choice, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
200 |
outputs = [result, seed]
|
201 |
)
|
202 |
|
|
|
295 |
|
296 |
run_button.click(
|
297 |
fn=infer_i2i,
|
298 |
+
inputs = [prompt, model_choice, image_upload_input, editing_strength, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
299 |
outputs = [result, seed]
|
300 |
)
|
301 |
|
|
|
394 |
|
395 |
run_button.click(
|
396 |
fn=infer_ip_adapter,
|
397 |
+
inputs = [prompt, model_choice, image_upload_input, ip_adapter_scale, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
398 |
outputs = [result, seed]
|
399 |
)
|
400 |
|