Update app.py
Browse files
app.py
CHANGED
@@ -10,14 +10,19 @@ from huggingface_hub import hf_hub_download
|
|
10 |
|
11 |
def bold_predicted_letters(input_string: str, output_string: str) -> str:
|
12 |
result = []
|
13 |
-
i = 0
|
|
|
|
|
14 |
while i < len(input_string):
|
15 |
-
if input_string[i:i+6] == "<
|
16 |
-
result.append("**" + output_string[
|
17 |
i += 6
|
|
|
18 |
else:
|
19 |
-
result.append(
|
20 |
i += 1
|
|
|
|
|
21 |
return "".join(result)
|
22 |
|
23 |
class model:
|
@@ -92,9 +97,6 @@ class model:
|
|
92 |
formatted_predicted_sequence = formatted_predicted_sequence.replace("<pad>","")
|
93 |
formatted_predicted_sequence = formatted_predicted_sequence.replace("<cls>","")
|
94 |
formatted_predicted_sequence = formatted_predicted_sequence.replace("<eos>","")
|
95 |
-
|
96 |
-
print(sequence_input)
|
97 |
-
print(formatted_predicted_sequence)
|
98 |
|
99 |
formatted_predicted_sequence = bold_predicted_letters(sequence_input, formatted_predicted_sequence)
|
100 |
return T.ToPILImage()(protein_image[0,0]), T.ToPILImage()(nucleus_image[0,0]), formatted_predicted_sequence
|
|
|
10 |
|
11 |
def bold_predicted_letters(input_string: str, output_string: str) -> str:
|
12 |
result = []
|
13 |
+
i = j = 0
|
14 |
+
input_string = input_string.upper()
|
15 |
+
output_string = output_string.upper()
|
16 |
while i < len(input_string):
|
17 |
+
if input_string[i:i+6] == "<MASK>":
|
18 |
+
result.append("**" + output_string[j] + "**")
|
19 |
i += 6
|
20 |
+
j += 1
|
21 |
else:
|
22 |
+
result.append(input_string[i])
|
23 |
i += 1
|
24 |
+
if input_string[i-1] != "<":
|
25 |
+
j += 1
|
26 |
return "".join(result)
|
27 |
|
28 |
class model:
|
|
|
97 |
formatted_predicted_sequence = formatted_predicted_sequence.replace("<pad>","")
|
98 |
formatted_predicted_sequence = formatted_predicted_sequence.replace("<cls>","")
|
99 |
formatted_predicted_sequence = formatted_predicted_sequence.replace("<eos>","")
|
|
|
|
|
|
|
100 |
|
101 |
formatted_predicted_sequence = bold_predicted_letters(sequence_input, formatted_predicted_sequence)
|
102 |
return T.ToPILImage()(protein_image[0,0]), T.ToPILImage()(nucleus_image[0,0]), formatted_predicted_sequence
|