Spaces:
Sleeping
Sleeping
New: app and requirements
Browse files- app.py +135 -0
- requirements.txt +8 -0
app.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import json
|
3 |
+
import torch
|
4 |
+
import torchvision
|
5 |
+
from torch import nn
|
6 |
+
from diffusers import UNet2DModel, DDPMScheduler
|
7 |
+
import safetensors
|
8 |
+
from huggingface_hub import hf_hub_download
|
9 |
+
|
10 |
+
### GPU SETUP
|
11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
+
|
13 |
+
## LOAD THE UNET MODEL AND DDPM SCHEDULER FROM HUGGINGFACE HUB
|
14 |
+
class ClassConditionedUnet(nn.Module):
|
15 |
+
def __init__(self, num_classes=10, class_emb_size=10):
|
16 |
+
super().__init__()
|
17 |
+
|
18 |
+
# The embedding layer will map the class label to a vector of size class_emb_size
|
19 |
+
self.class_emb = nn.Embedding(num_classes, class_emb_size)
|
20 |
+
|
21 |
+
# Self.model is an unconditional UNet with extra input channels
|
22 |
+
# to accept the conditioning information (the class embedding)
|
23 |
+
self.model = UNet2DModel(
|
24 |
+
sample_size=28, # output image resolution. Equal to input resolution
|
25 |
+
in_channels=1 + class_emb_size, # Additional input channels for class cond
|
26 |
+
out_channels=1, # the number of output channels. Equal to input
|
27 |
+
layers_per_block=3, # three residual connections (ResNet) per block
|
28 |
+
block_out_channels=(128, 256, 512), # N of output channels for each block. Inverse for upsampling
|
29 |
+
down_block_types=(
|
30 |
+
"DownBlock2D", # a regular ResNet downsampling block
|
31 |
+
"AttnDownBlock2D",
|
32 |
+
"AttnDownBlock2D", # a ResNet downsampling block with spatial self-attention
|
33 |
+
),
|
34 |
+
up_block_types=(
|
35 |
+
"AttnUpBlock2D", # a ResNet upsampling block with spatial self-attention
|
36 |
+
"AttnUpBlock2D",
|
37 |
+
"UpBlock2D", # a regular ResNet upsampling block
|
38 |
+
),
|
39 |
+
dropout = 0.1, # Dropout prob between Conv1 and Conv2 in a block. From Improved DDPM paper
|
40 |
+
)
|
41 |
+
|
42 |
+
# Forward method takes the class labels as an additional argument
|
43 |
+
def forward(self, x, t, class_labels):
|
44 |
+
bs, ch, w, h = x.shape # x is shape (bs, 1, 28, 28)
|
45 |
+
|
46 |
+
# class conditioning embedding to add as additional input channels
|
47 |
+
class_cond = self.class_emb(class_labels) # Map to embedding dimension
|
48 |
+
class_cond = class_cond.view(bs, class_cond.shape[1], 1, 1).expand(bs, class_cond.shape[1], w, h)
|
49 |
+
# class_cond final shape (bs, 4, 28, 28)
|
50 |
+
|
51 |
+
# Model input is now x and class cond concatenated together along dimension 1
|
52 |
+
# We need provide additional information (the class label)
|
53 |
+
# to every spatial location (pixel) in the image. Not changing the original
|
54 |
+
# pixels of the images, but adding new channels.
|
55 |
+
net_input = torch.cat((x, class_cond), 1) # (bs, 5, 28, 28)
|
56 |
+
|
57 |
+
# Feed this to the UNet alongside the timestep and return the prediction
|
58 |
+
# with image output size
|
59 |
+
return self.model(net_input, t).sample # (bs, 1, 28, 28)
|
60 |
+
|
61 |
+
# Define paths to download the model and scheduler
|
62 |
+
repo_name = "Huertas97/conditioned-unet-fashion-mnist-non-ema"
|
63 |
+
|
64 |
+
### UNET MODEL
|
65 |
+
# Download the safetensors model file
|
66 |
+
model_file_path = hf_hub_download(repo_id=repo_name, filename="fashion_class_cond_unet_model_best.safetensors")
|
67 |
+
|
68 |
+
# Load the Class Conditioned UNet model state dictionary
|
69 |
+
state_dict = safetensors.torch.load_file(model_file_path)
|
70 |
+
model_classcond_native = ClassConditionedUnet()
|
71 |
+
model_classcond_native.load_state_dict(state_dict)
|
72 |
+
model_classcond_native.to(device)
|
73 |
+
|
74 |
+
### DDPM SCHEDULER
|
75 |
+
# Download and load the scheduler configuration file
|
76 |
+
scheduler_file_path = hf_hub_download(repo_id=repo_name, filename="scheduler_config.json")
|
77 |
+
|
78 |
+
with open(scheduler_file_path, 'r') as f:
|
79 |
+
scheduler_config = json.load(f)
|
80 |
+
|
81 |
+
noise_scheduler = DDPMScheduler.from_config(scheduler_config)
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
# Define the classes
|
87 |
+
class_labels = ["T-shirt/top", "Trouser", "Pullover", "Dress", "Coat", "Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot"]
|
88 |
+
|
89 |
+
|
90 |
+
def generate_images(selected_class, num_images, progress=gr.Progress()):
|
91 |
+
"""
|
92 |
+
Generate images using the trained model.
|
93 |
+
|
94 |
+
Parameters:
|
95 |
+
- selected_class: The class label as a string.
|
96 |
+
- num_images: Number of images to generate.
|
97 |
+
|
98 |
+
Returns:
|
99 |
+
- A list of generated images.
|
100 |
+
"""
|
101 |
+
# Convert class label to corresponding index
|
102 |
+
class_idx = class_labels.index(selected_class)
|
103 |
+
|
104 |
+
# Prepare random x to start from
|
105 |
+
x = torch.randn(num_images, 1, 28, 28).to(device)
|
106 |
+
y = torch.tensor([class_idx] * num_images).to(device)
|
107 |
+
|
108 |
+
for t in progress.tqdm(noise_scheduler.timesteps, desc="Generating image", total=noise_scheduler.config.num_train_timesteps): #
|
109 |
+
with torch.no_grad():
|
110 |
+
residual = model_classcond_native(x, t, y)
|
111 |
+
x = noise_scheduler.step(residual, t, x).prev_sample
|
112 |
+
|
113 |
+
# Post-process the generated images
|
114 |
+
# Clamp the values to [0, 1] and convert to [0, 255] uint8
|
115 |
+
# Also move the tensor to CPU and convert to numpy for plotting
|
116 |
+
x = (x.clamp(-1, 1) + 1) / 2
|
117 |
+
x = (x * 255).type(torch.uint8).cpu()
|
118 |
+
|
119 |
+
# Convert to list of images
|
120 |
+
images = [img.squeeze(0).numpy() for img in x]
|
121 |
+
return images
|
122 |
+
|
123 |
+
# Create the Gradio interface
|
124 |
+
demo = gr.Interface(
|
125 |
+
fn=generate_images,
|
126 |
+
inputs=[
|
127 |
+
gr.Dropdown(class_labels, label="Select Class", value="T-shirt/top"),
|
128 |
+
gr.Slider(minimum=1, maximum=8, step=1, value=1, label="Number of Images")
|
129 |
+
],
|
130 |
+
outputs=gr.Gallery(type="numpy", label="Generated Images"),
|
131 |
+
live=False,
|
132 |
+
description="Generate images using a class-conditioned UNet model."
|
133 |
+
)
|
134 |
+
|
135 |
+
demo.launch(share=True)
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==2.3.1
|
2 |
+
transformers
|
3 |
+
diffusers==0.29.2
|
4 |
+
safetensors==0.4.3
|
5 |
+
huggingface_hub==0.23.4
|
6 |
+
accelerate==0.32.1
|
7 |
+
numpy==1.26.4
|
8 |
+
json==2.0.9
|