File size: 6,459 Bytes
a771624
 
 
 
 
 
 
 
 
 
 
 
 
efb9b71
 
910dcfa
 
 
 
 
 
 
 
 
 
 
a771624
910dcfa
a771624
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efb9b71
a771624
 
 
 
 
 
 
 
910dcfa
a771624
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efb9b71
a771624
 
 
 
efb9b71
 
 
a771624
 
efb9b71
a771624
 
 
 
 
 
 
 
 
 
 
 
 
 
efb9b71
a771624
efb9b71
 
 
a771624
 
 
efb9b71
a771624
efb9b71
 
 
 
 
 
 
 
 
a771624
 
 
 
efb9b71
a771624
 
 
efb9b71
a771624
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import streamlit as st
import time
import easyocr
import math
from pathlib import Path
from PIL import Image, ImageDraw
import PIL
import io
import os
import cv2
import numpy as np
import shutil
import base64
import logging

st.set_page_config(
     page_title="Inpaint Me",
     page_icon=":art:",
     layout="wide",
     initial_sidebar_state="expanded",
     menu_items={
         'Get Help': 'https://www.extremelycoolapp.com/help',
         'Report a bug': "https://www.extremelycoolapp.com/bug",
         'About': "# This is a header. This is an *extremely* cool app!"
     }
 )

@st.cache_data(show_spinner=False, allow_output_mutation=True, suppress_st_warning=True)
def load_models():
    #specify shortform of language you want to extract,
    # I am using Spanish(es) and English(en) here by list of language ids
    reader = easyocr.Reader(['en'],)
    return reader

reader = load_models()

def midpoint(x1, y1, x2, y2):
    x_mid = int((x1 + x2)/2)
    y_mid = int((y1 + y2)/2)
    return (x_mid, y_mid)

def inpaint_text(img, text_coordinates):
    # read image
    
    # img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    # generate (word, box) tuples 
    mask = np.zeros(img.shape[:2], dtype="uint8")
    for box in text_coordinates:
        x0, y0 = box[0]
        x1, y1 = box[1] 
        x2, y2 = box[2]
        x3, y3 = box[3] 
        
        x_mid0, y_mid0 = midpoint(x1, y1, x2, y2)
        x_mid1, y_mi1 = midpoint(x0, y0, x3, y3)
        
        thickness = int(math.sqrt( (x2 - x1)**2 + (y2 - y1)**2 ))
        
        cv2.line(mask, (x_mid0, y_mid0), (x_mid1, y_mi1), 255,    
        thickness)
        img = cv2.inpaint(img, mask, 7, cv2.INPAINT_NS)
                 
    return(img)


def file_selector(folder_path='.'):
    filenames = os.listdir(folder_path)
    selected_filename = st.selectbox('Select a file', filenames)
    return os.path.join(folder_path, selected_filename), selected_filename











st.markdown(
    """
    <style>
    .logo-img {


        margin-top: auto;
        margin-left: 30%;
        width: 50%;
        
    }
    .logo-img-2 {
    margin-top: auto;
      margin-left: 20%;
      width: 35%;        
        
    }   
    </style>
    """,
    unsafe_allow_html=True
)

LOGO_IMAGE = "inpaint_me_logo.png"

col1, col2= st.columns([2, 2])
with col1:
    # st.image('./aida_logo.png')
     st.markdown(
        f"""
            <img class="logo-img" src="data:image/png;base64,{base64.b64encode(open(LOGO_IMAGE, "rb").read()).decode()}">
        """,
        unsafe_allow_html=True
    )  
    
with col2:
    # st.image('./aida_logo.png')
     st.markdown(
        f"""
            <img class="logo-img-2" src="data:image/png;base64,{base64.b64encode(open("aida_logo.png", "rb").read()).decode()}">
        """,
        unsafe_allow_html=True
    )  

        
st.header("")        
with st.expander("Project Description", expanded=False):
     st.write("""
         Developed in Applied Intelligence and Data Analysis ([AI+DA](http://aida.etsisi.upm.es/)) group at Polytech University of Madrid (UPM).
         
         To rule out the possibility of text misleading image Deep Learning models (e.g., CNNs) it is useful to remove text from images. Hence, 
         this tool uses [EasyOCR](https://github.com/JaidedAI/EasyOCR) and [OpenCV](https://pypi.org/project/opencv-python/) for detecting texts and inpainting them. Currently, only `JPG` files are supported. This tools has been tested on memes, feel free to try some examples or upload your own images.
     """)          

        
        
file_example_path = None        
if st.checkbox('Select a example'):
    folder_path = './Examples/'
    # if st.checkbox('Change directory'):
    #     folder_path = st.text_input('Enter folder path', '.')
    file_example_path, example_file_name  = file_selector(folder_path=folder_path)
    st.write('You selected `%s`' % file_example_path)        
     
        
uploaded_file = st.file_uploader(label="Upload image", 
                 type=["jpg", "jpeg"], 
                 accept_multiple_files=False, 
                 key=None,
                 help=None, 
                 on_change=None,
                 args=None, 
                 kwargs=None,
)



col1, col2, col3 = st.columns([2, 0.5, 2])



if file_example_path and not uploaded_file:
    with col1:
        st.subheader("Original")
        # st.write(f"./Examples_inpainted/{example_file_name.strip(".jpg")}_inpainted.jpeg")
        img = Image.open( file_example_path )
        st.image(img, caption=None, width=None, use_column_width=None, clamp=False, channels="RGB", output_format="auto")

    with col3:
        st.subheader("Inpainted")
        with st.spinner('Wait for it...'):
            time.sleep(1)
            example_file_name = example_file_name.strip(".jpg")
            inpaint_image = f"./Examples_inpainted/{example_file_name}_inpaint.jpeg"
            # img_array =  np.array(Image.open( file_example_path ))
            # # detect text
            # bounds = reader.readtext(img_array, detail=1) #detail=1 # [(coordinates, detected text, confidence threshold)]
            # text_coordinates = [ bound[0] for bound in bounds]
            # # inpaint text coordinates
            # inpaint_image = inpaint_text(img_array, text_coordinates)
            st.image(inpaint_image, caption=None, width=None, use_column_width=None, clamp=False, channels="RGB", output_format="auto") 
        
if uploaded_file:
        with col1:
            st.subheader("Original")
            st.image(uploaded_file, caption=None, width=None, use_column_width=None, clamp=False, channels="RGB", output_format="auto")

        with col3:
            st.subheader("Inpainted")
            with st.spinner('Wait for it...'):
                # Transform loaded file to bytes
                bytes_data = uploaded_file.getvalue()
                # bytes to numpy array
                img_array = np.array(Image.open(io.BytesIO(bytes_data))) 
                # detect text
                bounds = reader.readtext(img_array, detail=1) #detail=1 # [(coordinates, detected text, confidence threshold)]
                text_coordinates = [ bound[0] for bound in bounds]
                # inpaint text coordinates
                inpaint_image = inpaint_text(img_array, text_coordinates)
                st.image(inpaint_image, caption=None, width=None, use_column_width=None, clamp=False, channels="RGB", output_format="auto")